
A First View of Exedra: A Domain-Specific Language for
Large Graph Analytics Workflows

Miyuru Dayarathna
Department of Computer Science,

Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku,

Tokyo 152-8552, Japan
dayarathna.m.aa@m.titech.ac.jp

Toyotaro Suzumura
Department of Computer Science,

Tokyo Institute of Technology/
IBM Research - Tokyo

2-12-1 Ookayama, Meguro-ku,
Tokyo 152-8552, Japan

suzumura@cs.titech.ac.jp

ABSTRACT

In recent years, many programming models, software libraries,
and middleware have appeared for processing large graphs of
various forms. However, there exists a significant usability
gap between the graph analysis scientists, and High Perfor-
mance Computing (HPC) application programmers due to
the complexity of HPC graph analysis software. In this pa-
per we provide a basic view of Exedra, a domain-specific
language (DSL) for large graph analysis in which we aim
to eliminate the aforementioned complexities. Exedra con-
sists of high level language constructs for specifying different
graph analysis tasks on distributed environments. We imple-
mented Exedra DSL on a scalable graph analysis platform
called Dipper. Dipper uses Igraph/R interface for creating
graph analysis workflows which in turn gets translated to
Exedra statements. Exedra statements are interpreted by
Dipper interpreter, and gets mapped to user specified li-
braries/middleware. Exedra DSL allows for synthesize of
graph algorithms that are more efficient compared to bare
use of graph libraries while maintaining a standard inter-
face that could use even future graph analysis software. We
evaluated Exedra’s feasibility for expressing graph analysis
tasks by running Dipper on a cluster of four nodes. We ob-
served that Dipper has the ability of reducing the time taken
for graph analysis when the workflow was distributed on all
four nodes despite the communication, and data format con-
version overhead of the Dipper framework.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining
; D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

General Terms

Languages, Design, Algorithms, Performance, Standardiza-
tion

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Keywords

Large graph data analysis, domain-specific language, exas-
cale, program synthesis, programming techniques, workflow

1. INTRODUCTION
Recently, areas such as social network analysis, web min-

ing, cyber security, etc. have found applications that re-
quire processing large graphs with billions of vertices, and
billions of edges. These applications require enormous com-
putational power, and resources which makes them harder to
run on single computer. For example, finding the PageRank
[26] of a large web graph, finding communities, path traver-
sal, etc. have higher orders of time complexities. Relational
databases are less effective in implementing such graph anal-
ysis [36].

Special classes of software have emerged to process these
data on distributed computing infrastructures such as clus-
ters, and super computers. Pegasus [18], Pregel [24], GBase
[17], Trinity [32], Hama [31], Giraph [13], HipG [20], PBGL
[14], ScaleGraph [10], KDT [23], etc. are few examples for
the large body of research on design and implementation
of graph analysis middleware and software platforms tar-
geted for large graph analysis in high performance comput-
ing systems. These software provide means for modeling
large graphs and allow conducting analysis on them.

Exascale systems [11] which are expected to appear in
the time frame 2018-2020 will revolutionize data analysis
technologies. However, programming on such Exascale sys-
tems will have to operate on a diverse range of hardware
such as multi-core processors, hardware accelerators, etc.
Furthermore, massive levels of parallelism, increase in sys-
tem faults, and complex, multi-component software envi-
ronment are major challenges the Exascale applications will
face. There are different path ways for implementing data
processing systems in Exascale environments. First such
method is use of a standard general purpose programming
paradigm and adapt it to different architectures. E.g., MPI
is widely used programming model for programming parallel
systems. Therefore, we can either emulate MPI and differ-
ent devices or combine MPI with device specific languages to
create graph data processing applications. In the same way
we can use novel general purpose parallel programming lan-
guages such as PGAS languages (UPC [12], X10 [4], Chapel

509

[3], etc.) to program data analysis tasks on Exascale sys-
tems.
However, a major drawback associated with the aforemen-

tioned approaches is that each one of them have their own
solution. User must be veteran of the general purpose lan-
guage rather than the application he/she is interested of. We
need unified means of doing large graph processing in future
Exascale systems that will enable broad scientific commu-
nity to leverage the benefits of Exascale. Our approach for
programming large graph analysis on Exascale environments
(which is currently less studied) is Domain-specific languages
[25]. Domain-specific languages (DSLs) are programming
languages tailored to a specific application domain, and they
represent majority of the programming languages. They ex-
ploit domain knowledge for productivity and efficiency. Use
of DSLs offer substantial gains in expressiveness and ease of
use compared with general-purpose programming languages
used for graph analysis.
We introduce Exedra: a domain-specific language for con-

ducting large graph analysis on future exascale systems. Un-
like current DSLs for graph analysis our focus is to cre-
ate a complete DSL for specifying graph analysis workflows.
Through Exedra we define a complete language for speci-
fying graph representation, and analytics. We apply this
language to a graph processing platform that we developed
called Dipper. Dipper allows for specifying large graph anal-
ysis tasks using R [28] which is a programming language for
statistical computing. Dipper extends the famous Igraph [6]
graph analysis package for specifying the large graph anal-
ysis tasks. Users can run graph analysis tasks using their
familiar Igraph/R [33][6] interface which gets translated to
Exedra statements by Dipper. These statements are inter-
preted by the Exedra interpreter and they get mapped in to
the underlying high performance libraries.
Our contributions in this paper can be listed as follows,

• Exedra : We introduce the design of a domain-specific
language for programming Exascale graph analysis tas-
ks.

• Dipper : We implement Exedra DSL on an experimen-
tal graph analysis platform by extending the famous
Igraph/R interface.

• Performance Evaluation : We report a preliminary
performance evaluation of our approach by conduct-
ing graph analysis tasks using Dipper.

The rest of the paper is organized as follows. In the
next section we provide related work for Exedra and Dip-
per. Next, we describe the language syntax and the design
decisions that we took while devising the Exedra in Section
3. We describe the design and implementation of Dipper in
Section 4. Then in Section 5 we make a preliminary eval-
uation of the performance of Dipper platform. We discuss
the results we obtained by implementing Dipper in Section
6. We conclude the paper in Section 7.

2. RELATED WORK
Exedra provides a unique programming interface for large

graph analysis with the emphasize on programmer produc-
tivity. It descends from large graph analysis software on

High Performance Computing (HPC) environments yet sig-
nificantly deviates from the current approaches. Several
other research have been conducted on creating DSLs for
graph analysis, and increasing graph analysis productivity.
Yet we believe we are the first to introduce a DSL for creat-
ing unified large graph analysis workflows to increase graph
analyst’s productivity targeting Exascale systems.

Green-Marl is a DSL designed specifically for graph anal-
ysis algorithms [16]. Compared to Exedra which is an inter-
preted language, Green-Marl is a compiled language. Green-
Marl code gets compiled to C++ code while Exedra state-
ments are directed to the underlying library/middleware.
Furthermore, graph data structures in Green-Marl are im-
mutable. Yet, in Exedra graph’s content can be changed dur-
ing execution. Currently Green-Marl does not cover broad
set of analytics such as clustering, community detection, etc.
which are available in Exedra.

We adapt similar syntax to Igraph/R [6][33] package when
creating Exedra DSL. Igraph is written in C and we use
Igraph/R to denote its R interface [33]. The main reason for
this design decision was due to the fact that Igraph/R pack-
age is currently widely used by the community of complex
network analysts and it would be easier for domain experts
to utilize the same syntax when they work with Exedra.
However, there are limitations for the Igraph/R grammar
such as specification of graph traversal operations that we
address in Exedra.

Gremlin [30][15][29] and SPARQL [34] are two examples
for DSLs that can be used for specifying graph analysis
tasks. Gremlin is a graph traversal language and is com-
pletely oriented toward specifying queries over graph data.
Yet, Gremlin does not have constructs to express specific al-
gorithms such as degree distribution calculation, graph clus-
tering, pattern matching, etc. Exedra improves over Gremlin
in this aspect which we believe is very important for allow-
ing users to specify a variety of graph analysis algorithms.
SPARQL on the other hand is the norm for accessing RDF
graphs. Yet it also lacks the support for expressing graph
analysis algorithms. SPARQL’s syntax is closer to SQL while
Exedra adopts R syntax used in Igraph/R package.

Knowledge Discovery Toolbox (KDT) is graph analysis li-
brary written in Python which aims for high level exploratory
graph analytics by domain experts and lower level specifica-
tion of graph operations by the developers of graph analyt-
ics [23]. KDT is built on top of the CombinatorialBLAS
[1] which is a C++ library for combinatorial computational
kernels. Current version of KDT is interfacing only Combi-
natorialBLAS, and it has not been extended for other back
ends. Hence KDT can only utilize the computational func-
tions offered by Combinatorial BLAS.

Neptune is a DSL based on Ruby programming language
which automates configuration and deployment of scientific
software frameworks over disparate cloud computing systems
[2]. Neptune integrates support for MPI, MapReduce, Uni-
fied Parallel C (UPC) [5], X10 [4], etc. Neptune is closely
related to Exedra, however Exedra’s focus in only on large
graphs.

Das et al. created Ricardo [7] a data analysis platform
which allows analysts to work on huge data sets using R lan-
guage. Yet, Ricardo does only integration of R with Hadoop.

510

Dipper integrates multiple programming libraries/middlewa-
re for large graph analytics.
ScaleGraph is an X10 library for billion scale graph ana-

lytics [10][9]. The library is completely written in X10 which
is a programming language developed by IBM Research with
the goal of simplifying the programming model in a way that
increases the programming productivity for future Extreme
scale systems. Compared to ScaleGraph, Exedra is a higher
level graph analytics platform which aims for unifying graph
analysis activities.
Kennedy et al. described a strategy called Telescoping lan-

guages [19] where they developed a framework for automatic
generation of optimizing compilers for new domain-specific
languages. They generate a library aware optimizer which
uses the information gathered during preprocessing to carry
out fast an effective optimization of high level scripts. Differ-
ent from them our focus is only on one single domain-specific
language. However, we do a library aware optimization a
similarity that we share with their approach.
A summary of graph analysis software described in this

section is shown in Table 1.

Table 1: A summary of graph analysis software.

Supports
Dis-
tributed
Process-
ing?

Mutable
Graph
Data
Struc-
ture?

Interpre-

ted?

Graph
analysis
library?

Igraph No Yes No Yes
KDT Yes Yes Yes Yes
ScaleGraph Yes Yes No Yes
SPARQL No Yes Yes No
Gremlin No Yes Yes No
Green-Marl No No No No
Exedra Yes Yes Yes No

3. EXEDRA DOMAIN-SPECIFIC

LANGUAGE
As mentioned earlier, Exedra is a domain-specific language

for large graph analysis. We designed the language follow-
ing data flow paradigm. Exedra is an interpreted language
similar to several related domain-specific languages such as
R, Gremlin, etc. We also made an important design deci-
sion that to follow the Igraph/R syntax as mentioned previ-
ously. Exedra has language constructs for defining compu-
tation compartments. Computations are conducted on dif-
ferent compartments that makes a data flow path. A com-
partment is an independent block of computation. It can
either receive data from another compartment or instantiate
data from itself. After processing the data the compartment
hands over the data to another compartment in the flow
graph.
Figure 1 shows some examples for codes written in Exedra

depicting the language’s core language constructs. An Exe-
dra program consists of one or more compartments. Every
Exedra compartment starts with exedra:begin, and ends
with exedra:end, thus the simplest program is of the form
Figure 1(a). User can pass parameters to a compartment.

exedra:begin[medium=scalegraph]

Graph g = graph.empty()

Vertex v = (1)

add.vertices(g,c(1,2,3))

exedra:end

exedra:begin

Graph g = read.graph("/nfs/home/admin/Desktop/16.dl")

summary(g)

Vec v = clusters(g,alg="spectral")

exedra:end

exedra:begin[medium=scalegraph]

Graph g = read.graph("/nfs/home/admin/Desktop/16.dl")

exedra:end

exedra:begin[medium=kdt]

pageRank(g, epsilon=0.0000001)

exedra:end

exedra:begin

exedra:end (a)

(b)

(c)

(d)

Figure 1: Example Exedra code segments.

One of the most important parameters is medium. The
medium is the library/middleware that the Exedra compart-
ment runs on. Currently we implemented support for Scale-
Graph, KDT, and R mediums. While ScaleGraph, and KDT
are large graph processing libraries, we provide R language
also as a medium in Exedra since non-graph computations
can be specified in R. Furthermore, if a compartment has
been marked with execution medium as R, its contents are
not interpreted by Exedra interpreter, rather directed to R
interpreter directly.

If any parameter has not been provided (as in the case with
compartments in Figure 1 (a) and (c)) the default medium’s
language configured with Exedra interpreter is used as the
language of interpreted output.

Furthermore, variables in Exedra have an associated type.
For example, the variable g in Figure 1 (c) is of type Graph.
The language has support for Graph, Arr (Array), Vec (Vec-
tor), String, Int (Integer), Float, Double, Long types. Note
that type system is only valid on non-R Exedra compart-
ments. Comments on Exedra begins with # and Exedra sup-
ports only single line comments (see Figure 5).

If an Exedra program specifies more than one compart-
ment (E.g., Figure 1 (d)) they are executed in sequential
order. In Figure 1 (d), first the graph loading happens in
ScaleGraph compartment. Once the ScaleGraph compart-
ment finishes its execution, PageRank is calculated on KDT
compartment. Such type of multiple compartments can be
used to leverage several libraries/middleware to conduct a
computation that cannot be conducted single handed on any
of those software. For example in the scenario shown in Fig-
ure 1 (d), ScaleGraph is capable of loading EdgeList files
while present version of KDT does not support such feature.

In this paper we describe two scenario workflows for graph
analysis and how they can be represented in Exedra. The
first scenario is privacy preservation of graphs and social net-
works [35]. In a social network an adversary can know any
subgraph around a certain individual A [21]. If such a sub-
graph has been identified in the anonymized graph with high
probability, user A has high identity disclosure risk. Liu et
al. described a technique for minimally modifying the graph
to protect the identity of each individual involved. In brief
their technique involves two steps. First they construct an

511

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Graph g =

read.graph("/nfs/home/admi

n/Desktop/16.dl")

#Find the largest Connected

Component

Graph concomp =

connectedcomp.giant(g)

Vec cl =

clusters(concomp,alg="spect

ral")

Int len = length(cl)

#contract all vertices with

the same cluster ID into a

single vertex

Graph g2 =

contract.vertices(g, rep(cl,

cl.id),

vertex.attr.comb=toString)

X10 X10 Python Python

Figure 3: Scenario 2.

exedra:begin[medium=scalegraph]

Graph g = read.graph("/nfs/home/admin/Desktop/16.dl")

Vec d = degree(g,mode=c("total"))

exedra:end

exedra:begin[medium=R]

len = length(d) - 1

from = c()

to = c()

repeat{ flg = 0

 flg2 = 0

 for(i in 1:len){

 if(d[i] < 0){

 flg = 1

 break

 }else if(d[i] != 0){

 flg2 = 1

 }

 }

 if((flg == 1)||(flg2 == 0)){

 break

 }

 randval = sample(1:len, 1)

 d[randval] = 0

 largest = 0

 counter = 0

 len = length(d)

 for(i in 1:len){

 if(randval != i){

 if(d[i] > largest){

 largest = i

 }

 }

 }

 d[largest] = d[largest] - 1

 from = append(from, c(randval))

 to = append(to, c(largest))

}

relation = data.frame(from,to)

exedra:end

exedra:begin[medium=scalegraph]

Graph result = graph.data.frame(relation, directed=TRUE)

exedra:end

Figure 2: Example Exedra code for scenario 1.

anonymous degree sequence d’ for a given degree sequence d
of a graph G. Next, they use d’ to construct an anonymized
graph G’. More details on their technique is available from
[21]. We have coded the second step of this process as shown
in Figure 2.

This involves three Exedra compartments. The first com-
partment loads the graph G and calculates its degree se-
quence d. Next, the R compartment creates the anonymized
graph using the degree sequence d (Note that for simplicity
we choose the same degree sequence d as the d’ anonymized
sequence). Next, the data frame named relation construct-
ed by the R compartment is fed to the third compartment
which constructs a ScaleGraph Graph instance. This is an
example for an Exedra code that involves multiple compart-
ments. Also, the second compartment does not involve pro-
cessing any graph instances.

The second example scenario we have chosen is a Mini-
workflow that was introduced by Lugowski et al. while in-
troducing the KDT library [23]. The workflow is illustrated
in Figure 4 which conducts spectral clustering on the giant
component of a graph. How this workflow gets executed on
Dipper is shown in Figure 3. The workflow first loads the
graph of edge list format from disk. This is done in a Scale-
Graph compartment because KDT does not support this fea-
ture currently. Next, the graph’s largest connected compo-
nent is calculated on a KDT compartment (Currently the
largest connected component calculation is not supported in
ScaleGraph). The largest connected component is sent to
a ScaleGraph compartment to conduct spectral clustering
which is not implemented in KDT yet. Finally, all the ver-
tices of each cluster are contracted in a KDT compartment.
The Exedra code for this workflow is shown in Figure 5.

Load the

graph

Find and select the

giant component

Cluster the graph

(Spectral clustering)

Contract

the clusters

Edgelist File

Figure 4: Scenario 2.

512

exedra:begin[medium=scalegraph]

Graph g = read.graph("/nfs/home/admin/Desktop/16.dl")

exedra:end

exedra:begin[medium=kdt]

#Find the largest Connected Component

Graph concomp = connectedcomp.giant(g)

exedra:end

exedra:begin[medium=scalegraph]

Vec cl = clusters(concomp,alg="spectral")

exedra:end

exedra:begin[medium=kdt]

#contract all vertices with the same cluster ID into a single vertex

Graph g2 = contract.vertices(g, rep(cl, cl.id), vertex.attr.comb=toString)

exedra:end

Figure 5: Example Exedra code for scenario 2.

4. THE DESIGN, AND IMPLEMENTATION

OF DIPPER
We have implemented a large graph processing platform

called Dipper which uses Exedra as the language for pro-
gramming graph analysis tasks. This infrastructure is writ-
ten in C/C++. System architecture of Dipper is shown in
Figure 6. It should be noted that even though Dipper ac-
cepts instructions given in Exedra, the end-user of the sys-
tem writes the graph analysis computations in Igraph/R syn-
tax.

Exedra statements

Igraph/R statements

R

Exedra-R Plugin

Exedra Interpreter

Query Cache Dipper Code

Generator

Target Language

Compilers

Dipper

Compiler

Target Runtimes Dipper Scheduler

Figure 6: System Architecture of Dipper.

We have developed an R extension (Exedra-R Plugin) by
extending the Igraph/R package. Currently this extension
converts a subset of the Igraph/R instructions in to Exedra
instructions (The remaining Igraph/R instructions are in-
terpreted by the Igraph/R extension itself). The generated
Exedra statements are fed to the Exedra Interpreter compo-
nent. It consists of an Exedra parser written using popular
ANTLR [27] parser generator. The Exedra parser identi-
fies each available compartment on the Exedra program. It
also checks in its Query Cache whether same query (i.e.,

Exedra program) has been executed recently. If the same
query had been executed recently, it will just reuse the pro-
gram binaries available on Query Cache rather than moving
to Dipper’s code generation and compilation phases. If the
query was not available in query cache the Exedra Inter-
preter proceeds to the code generation phase. In this phase,
once the target medium is identified each statement in the
program are translated to target medium’s language (E.g.,
X10, Python, etc.) or operating instructions. Next, these
instructions are added to predefined compartments by the
Dipper Code Generator.

A compartment is a standalone software module that runs
as an application of its target language. For example an
X10 compartment is an X10 application. Compartment has
server/client interface; and each compartment communicates
with its parent (i.e., predecessor in a compartment chain),
and its child (i.e., successor) using a custom protocol writ-
ten over TCP/IP. The location of a compartment is deter-
mined by the Dipper Code Generator. The location where
a compartment gets executed is determined during the code
generation time.

Once the Dipper Code Generator’s code generation phase
completes we, get a complete graph analysis workflow that
is made out of different graph analysis software components.
Next, the Dipper Compiler compiles this workflow using each
compartment’s target programming language. This step is
needed only for compiled languages such as X10, C/C++,
Java, etc. Once the complete workflow is ready to be exe-
cuted; the Dipper Scheduler instantiates the compartments,
and launches the workflow.

5. EVALUATION
We evaluated the performance of running a Dipper work-

flow, and also the performance of running a similar workflow
in a single library. We chose the second scenario described
in the Section 3 as the example workflow. Specifically we re-
port the execution time for execution of the workflow shown
on Figure 5, and also its KDT implementation. The KDT
implementation’s code is shown in Figure 7.

import sys

import kdt

bigG = kdt.DiGraph.load("/tmp/data/qh768.mtx")

bigG.spOnes()

#Finding the largest component

comp = bigG.connComp()

giantCompRoot = comp.hist().argmax()

G = bigG.subgraph(mask=(comp==giantCompRoot))

#Clustering

clus, markovG = G.cluster('Markov', addSelfLoops=True, expansion=2,

inflation=2, prunelimit=0.00001)

#Contracting

smallG = G.contract(clusterParents=clus)

Figure 7: KDT version of the example scenario 2.

We use a compute cluster of 4 nodes each with Intel R©Cor-
eTMi7-2600K CPU @ 3.40GHz, 24 cores, 15GB RAM, 8KB
L2 cache, 200GB hard drive to run both the Dipper workflow
and the KDT workflow. Each node was installed with Linux

513

CentOS kernel 2.6.18, X10 version 2.2.2, and Python 2.7.1.
We used KDT version 0.2 during the evaluation. All the
four nodes were connected through 1 Gigabit Ethernet. We
used the University of Florida’s sparse matrices during this
evaluation [8]. The details of the graphs that were used are
listed on Table 2. While we could have used larger graphs
during this initial evaluation, we used the graphs mentioned
in the Table 2 because the KDT implementation that we
used has been evaluated using graphs of such scale.

Table 2: Experiment graph data sets

graph vertices edges

bfwb398 398 2910

dw256A 512 2,480

qh768 768 2,934

qh882 882 3354

qh1484 1484 6100

The first half of the experiments were run on a single node.
Our objective was to get an idea of how the performance
varies for each experiment setup with different graph char-
acteristics. The performance results are shown in Figures 8
and 9. Next, in the second step we distributed the Dipper
compartments on to 4 different nodes (of the same specifica-
tion described above). Each node had one Dipper compart-
ment. However, this step could not be performed on KDT
since the application was made to run on single node. The
results of the second step are shown in Figure 10. All the
results shown in Figures 8, 9, and 10 are three times average
values.

0

2

4

6

8

10

12

14

16

bfwb398 dw256A qh768 qh882 qh1484

E
la

p
se

d
 T

im
e

(s
)

Graph Label

Elapsed Time for running Example Scenario 2 on

Dipper

Figure 8: Experiment results of running Dipper.

6. RESULTS AND DISCUSSION
From the results in Figures 8 and 9 we saw that increase

of the graph size increases the elapsed time of the analysis
process. However, Dipper spent more time in completing the
task because it had the overhead of format conversion. Fur-
thermore, the workflow used Spectral clustering rather than

0

0.2

0.4

0.6

0.8

1

1.2

1.4

bfwb398 dw256A qh768 qh882 qh1484

E
la

p
se

d
 T

im
e

(s
)

Graph Label

Elapsed Time for running Example Scenario 2

Entirely on KDT

Figure 9: Experiment results of running KDT workflow.

the Markov clustering used in KDT. The distributed version
of the experiment indicated that Dipper has the ability of re-
ducing the time consumed for completing the process when
distributed (Even though this involves additional network
overhead during communication between compartments on
different nodes). Note that we were not able to get results
for dw256A graph in distributed environment due to an error
thrown in KDT compartment.

0

0.5

1

1.5

2

2.5

bfwb398 qh768 qh882 qh1484

E
la

p
se

d
 T

im
e

(s
)

Graph Lable

Elapsed Time for running Example Scenario 2 on

Dipper on 4 Nodes

Figure 10: Experiment results of running Dipper distributed
on 4 nodes.

There are several limitations for current Exedra Language,
and the Dipper framework that we list down here. Current
version of Exedra grammar is limited to graph reading, and
graph analysis algorithms such as degree distribution calcu-
lation, clustering, largest component, etc. Current version
of Exedra grammar does not support graph traversal opera-
tions. Furthermore, we have implemented compartments for
ScaleGraph, and KDT libraries only which restricts us using
other mediums. Despite the benefit that Exedra provides for
constructing large graph analysis workflows, and distribut-
ing graph computations, communication between different
compartments introduces an additional overhead of data for-
mat conversion. We are investigating on different approaches
to minimize the overhead involved with format conversion.
Furthermore, the current Dipper framework is not able to
withstand the changes made to the libraries/middleware on
which the compartments run on.

514

7. CONCLUSION
Mining valuable information from large graphs is essential

in the era of Exascale which is predicted to appear in next
five or seven years time period. However, most of the analy-
sis, and mining of such large graph data organized as work-
flows need coordinated effort of several software components
since it is hard to find a single library/middleware that pro-
vides all the features expected by users. This is because the
rapid evolution of the field of large graph analysis, and the
plethora of software written for this purpose have different
applications. In this introductory paper we described Exe-
dra, a domain-specific language that we believe will provide
a unique way of specifying large graph analysis workflows.
The workflows get translated to the most appropriate mid-
dleware/library that it should get executed. This provides
ability of constructing scalable graph analysis workflows that
is not possible using single library or middleware.
Current Exedra grammar has limited support for a variety

of graph analysis tasks. We hope to implement such analysis
processes in future versions of Exedra grammar. Further-
more, we hope to support different other types of mediums
such as Pegasus, Apache Giraph, GraphLab [22], PBGL, etc.
in future. We also plan to conduct performance evaluation of
Dipper framework with graph sizes of billions of scale. More-
over, we plan to conduct more rigorous comparison of our
approach with existing other graph manipulation platforms.

8. ACKNOWLEDGMENTS
This research was supported by the Japan Science and

Technology Agency’s CREST project titled “Development
of System Software Technologies for post-Peta Scale High
Performance Computing”.

9. REFERENCES

[1] A. Buluç and J. R. Gilbert. The combinatorial blas:
design, implementation, and applications.
International Journal of High Performance Computing
Applications, 25(4):496–509, 2011.

[2] C. Bunch, B. Drawert, N. Chohan, C. Krintz,
L. Petzold, and K. Shams. Language and runtime
support for automatic configuration and deployment of
scientific computing software over cloud fabrics.
Journal of Grid Computing, 10:23–46, 2012.

[3] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language. Int. J. High
Perform. Comput. Appl., 21(3):291–312, Aug. 2007.

[4] P. Charles et al. X10: an object-oriented approach to
non-uniform cluster computing. In Proceedings of the
20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’05, pages 519–538, New York,
NY, USA, 2005. ACM.

[5] U. Consortium. UPC Language Specifications, v1.2.
Lawrence Berkeley National Lab Tech Report
LBNL-59208, 2005., 2011.

[6] G. Csardi and T. Nepusz. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006.

[7] S. Das et al. Ricardo: integrating r and hadoop. In
Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, SIGMOD ’10,
pages 987–998, New York, NY, USA, 2010. ACM.

[8] T. Davis and Y. Hu. The university of florida sparse
matrix collection. URL: http:
//www.cise.ufl.edu/research/sparse/matrices/,
2012.

[9] M. Dayarathna, C. Houngkaew, H. Ogata, and
T. Suzumura. Scalable performance of scalegraph for
large scale graph analysis. In High Performance
Computing (HiPC), 2012 19th International
Conference on, pages 1–9, 2012.

[10] M. Dayarathna, C. Houngkaew, and T. Suzumura.
Introducing scalegraph: an x10 library for billion scale
graph analytics. In Proceedings of the 2012 ACM
SIGPLAN X10 Workshop, X10 ’12, pages 6:1–6:9,
New York, NY, USA, 2012. ACM.

[11] J. Dongarra and et al. The international exascale
software project roadmap. International Journal of
High Performance Computing Applications,
25(1):3–60, 2011.

[12] T. El-Ghazawi and L. Smith. Upc: unified parallel c.
In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[13] T. A. S. Foundation. Apache incubator giraph. URL:
http://incubator.apache.org/giraph/, 2012.

[14] D. Gregor and A. Lumsdaine. Lifting sequential graph
algorithms for distributed-memory parallel
computation. SIGPLAN Not., 40:423–437, October
2005.

[15] Gremlin. Gremlin. URL:
https://github.com/tinkerpop/gremlin/wiki/, May
2012.

[16] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-marl: a dsl for easy and efficient graph analysis.
In Proceedings of the seventeenth international
conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’12, pages
349–362, New York, NY, USA, 2012. ACM.

[17] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and
C. Faloutsos. Gbase: a scalable and general graph
management system. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’11, pages 1091–1099,
New York, NY, USA, 2011. ACM.

[18] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: A peta-scale graph mining system
implementation and observations. In Proceedings of the
2009 Ninth IEEE International Conference on Data
Mining, ICDM ’09, pages 229–238, Washington, DC,
USA, 2009. IEEE Computer Society.

[19] K. Kennedy, B. Broom, A. Chauhan, R. Fowler,
J. Garvin, C. Koelbel, C. McCosh, and
J. Mellor-Crummey. Telescoping languages: A system
for automatic generation of domain languages.
Proceedings of the IEEE, 93(2):387 –408, feb. 2005.

[20] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal.
Hipg: parallel processing of large-scale graphs.
SIGOPS Oper. Syst. Rev., 45(2):3–13, July 2011.

515

[21] K. Liu and E. Terzi. Towards identity anonymization
on graphs. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
SIGMOD ’08, pages 93–106, New York, NY, USA,
2008. ACM.

[22] Y. Low et al. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proc.
VLDB Endow., 5(8):716–727, Apr. 2012.

[23] A. Lugowski, D. M. Alber, A. Buluç, J. R. Gilbert,
S. Reinhardt, Y. Teng, and A. Waranis. A flexible
open-source toolbox for scalable complex graph
analysis. In SDM, pages 930–941, 2012.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 international conference on Management
of data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[25] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, Dec. 2005.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web,
1999.

[27] T. Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. The Pragmatic
Programmers, 2011.

[28] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2012. ISBN
3-900051-07-0.

[29] M. A. Rodriguez and P. Neubauer. Constructions from
dots and lines. Bulletin of the American Society for
Information Science and Technology, 36(6):35–41,
2010.

[30] M. A. Rodriguez and P. Neubauer. The graph
traversal pattern. CoRR, abs/1004.1001, 2010.

[31] S. Seo, E. Yoon, J. Kim, S. Jin, J.-S. Kim, and
S. Maeng. Hama: An efficient matrix computation
with the mapreduce framework. In Cloud Computing
Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pages 721 –726,
30 2010-dec. 3 2010.

[32] B. Shao, H. Wang, and Y. Xiao. Managing and mining
large graphs: systems and implementations. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12,
pages 589–592, New York, NY, USA, 2012. ACM.

[33] The igraph Project. The igraph library. URL:
http://igraph.sourceforge.net/, 2013.

[34] W3C. Sparql query language for rdf. URL:
http://www.w3.org/TR/rdf-sparql-query/, 2012.

[35] X. Wu, X. Ying, K. Liu, and L. Chen. A survey of
privacy-preservation of graphs and social networks. In
C. C. Aggarwal, H. Wang, and A. K. Elmagarmid,
editors, Managing and Mining Graph Data, volume 40
of The Kluwer International Series on Advances in
Database Systems, pages 421–453. Springer US, 2010.

[36] A. Yoo and I. Kaplan. Evaluating use of data flow
systems for large graph analysis. In Proceedings of the
2nd Workshop on Many-Task Computing on Grids and
Supercomputers, MTAGS ’09, pages 5:1–5:9. ACM,
2009.

516

