
Towards Highly Scalable Pregel-based Graph Processing
Platform with X10

Nguyen Thien Bao
Tokyo Institute of Technology / JST CREST

Tokyo, Japan
nguyen.t.am@m.titech.ac.jp

Toyotaro Suzumura
Tokyo Institute of Technology / IBM Research -

Tokyo / JST CREST
Tokyo, Japan

suzumura@cs.titech.ac.jp

ABSTRACT
Many practical computing problems concern large graph.
Standard problems include web graph analysis and social
networks analysis like Facebook, Twitter. The scale of these
graph poses challenge to their efficient processing. To ef-
ficiently process large-scale graph, we create X-Pregel, a
graph processing system based on Google’s Computing Pregel
model [1], by using the state-of-the-art PGAS programming
language X10. We do not purely implement Google Pregel
by using X10 language, but we also introduce two new fea-
tures that do not exists in the original model to optimize the
performance : (1) an optimization to reduce the number of
messages which is exchanged among workers, (2) a dynamic
re-partitioning scheme that effectively reassign vertices to
different workers during the computation. Our performance
evaluation demonstrates that our optimization method of
sending messages achieves up to 200% speed up on Pager-
ank by reducing the network I/O to 10 times in compari-
son with the default method of sending messages when pro-
cessing SCALE20 Kronecker graph [2](vertices = 1,048,576,
edges = 33,554,432). It also demonstrates that our system
processes large graph faster than prior implementation of
Pregel such as GPS [3](stands for graph processing system)
and Giraph[4].

Categories and Subject Descriptors
H.3.4 [Information Systems]: Information Storage And
Retrieval—Distributed Systems

Keywords
Parallel graph processing system, distributed computing,
graph analysis system

1. INTRODUCTION
Recently large-scale graph processing is becoming a hot

research topic. There are many large data-set can be repre-
sented in a form of a large graph such as web graph, social
network graph (Facebook, Twitter) or road network graph.
To processing large data set in distributed manner, there is
a well-known model called MapReduce [5] and its famous
open-source implementation Hadoop [6]. However, it has
been recognized that this system is not always suitable when
processing data in the form of a large graph. Processing

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

graph needs the computation on the graph should be re-
peated many times until the desired result is acquired. Be-
cause of this specified computation model, the whole graph
data should be loaded on memory of a distributed system
for repeated computation. To target on this problem, we
have created a robust system called X-Pregel, for X10-based
Pregel, which is based on Google’s Pregel model. Our sys-
tem is designed to target on processing large graphs in short
time. To obtain this purpose, X-Pregel has three main new
features.

1. XPregel introduces an optimization method of sending
messages among workers in order to reduce the size of
messages sent over the network. In many graph algo-
rithms such as Pagerank [7], a vertex sends messages
along outgoing edges, each message is calculated by
the corresponding edge’s value and the vertex’s value.
In this scenario, X-Pregel introduces a new method
of sending messages that let the vertex send only its
value to each worker where the vertex’s neighbors lo-
cate in, and each worker has responsibility to create
the message and deliver that message to the destina-
tion vertex. By using this optimization method, the
size of messages sent over the network is reduced by
many times.

2. X-Pregel introduces a scheme of dynamic re-partitioning
that effectively reassign vertices to new workers during
computation in order to reduce the number of messages
sent over network at each superstep.

3. In X-Pregel, each worker partitions each vertices into
subpartitions, and processes the computation of sub-
partitions in parallel.

X-Pregel is implemented in X10 [8, 9], a type-safe, object-
oriented, multi-threaded, multi-node, garbage-collected pro-
graming language designed for high-productivity, high per-
formance computing. X10 is built on the two fundamental
notions of places and asynchrony. An X10 program typically
run as multiple operation system processes (each process is
called a place and supplies memory and worker-threads),
and uses asynchrony within a place and for communica-
tion across places. Over an essentially standard modern,
sequential, class-based, object-oriented substrate, X10 has
four core, orthogonal constructs for concurrency and dis-
tribution: async S (to execute S asynchronously), finish S
(to execute S and wait for all its syncs to terminate), When
(c) S (to execute S in one step from a state in which c is
true), and at (p) S (to switch to place p to execute S). The

501

power of X10 arises from the fact that these constructs can
be nested arbitrarily (with very few restrictions), and thus
lexical scoping can be used to refer to local variables across
places. The X10 compiler produces C++ for execution on
a native back-end and also Java for execution on multiple
JVMs. The X10 runtime ensures that the execution of at
transparently serializes values, transmits them across places
and reconstructs the lexical scope at the target place. The
X10 runtime provides fast multi-place coordination mecha-
nism, such as barriers and teams. X10 can run on sockets, on
PAMI, and on MPI (and hence on any transport on which
MPI runs, including Infiniband). Due to the characteristic
of X10, X-Pregel enjoys the following advantages:

1. Each X-Pregel worker place will run the computation
of vertices in parallel on a fixed number of multi-threaded.
For example, if the flag X10 NTHREADS is set to
6, then each worker place will partition each vertices
into 6 subpartitions, then the worker place will process
these partitions in parallel in 6 threads. Prior systems
like Giraph and GPS process the computation of ver-
tices in sequence.

2. X-Pregel leverages the power of MPI by using cus-
tomized Team library for its runtime communication.
The customized Team library provides methods that
are similar to MPI such as alltoall (each worker place
scatters its data equally to all the workers that belong
to a Team), alltoallv (each worker place scatters its
data in different size to all the workers that belong to
a Team). X-Pregel uses MPI-like APIs for workers to
send messages to each other. It makes the implemen-
tation of communication in X-Pregel be very simple.

The organization of this paper is as the following: in chap-
ter 2, we will discuss about Pregel model, Giraph and GPS,
two prior systems that implemented Pregel. In chapter 3, we
explain about X-Pregel within its new features for optimiz-
ing performance. Chapter 4 is performance evaluation of our
system as well as the new features. Chapter 5 is discussion
about the result. Final is conclusion and future work.

2. LARGE-SCALE GRAPH PROCESSING
MODEL AND PREGEL

There are two major computation models in large-scale
graph processing model, the message passing model imple-
mented by Google Pregel and the GIM-V [10](Generalized
Iterative Matrix-Vector multiplication). GIM-V is known
for its fast processing on large scale graph, but the model is
difficult to program and is not flexible. In the other hand,
message passing model like Pregel is very flexible, easy to
program.

2.1 The Original Pregel model
Google Pregel model is inspired by Valiant’s Bulk Syn-

chronous Paraller model [11]. Pregel computations consist
of a sequence of iterations, called supersteps. During a super
step the framework invokes a user-defined function for each
vertex, conceptually in parallel. The function specifies be-
havior at a single vertex V and a single superstep S. It can
read messages sent to V in super step S − 1, send messages
to other vertices that will be received at superstep S+1, and
modify the state of V and its outgoing edges. Messages are

Figure 1: Vertex State Machine

typically sent along outgoing edges, but a message maybe
sent to any vertex whose identifier is known.

The flow of a typical Pregel program is as the followings:

1. The framework reads the graph from a file system,
initializes the graph and partitions all the vertices into
a distributed system.

2. When the graph is already initialized and partitioned
to all workers, the workers start processing a sequence
of supersteps separated by global synchronization points.
The master has responsibility to control global syn-
chronization among workers.

3. Within each superstep the vertices compute in paral-
lel, each executing the same user-defined function that
expresses of the login of a given algorithm. Algorithm
termination is determined by every vertex voting halt.
In super step 0, every vertex is in the active state. All
active vertices participate in the computation of any
given superstep. A vertex deactivates itself by voting
halt. It means that the vertex has nothing to do and
Pregel framework will not execute that vertex in sub-
sequent supersteps unless it receives a message. The
algorithm as a whole terminates when all vertices are
simultaneously inactive and there are no message in
transit. Figure 1 illustrates the state machine of ver-
tex.

4. When the algorithm terminates, the Pregel Framework
writes the result graph to the file system. The result
graph is often isomorphic to the input, but this is no a
necessary property of the system because vertices and
edges can be added and removed during computation.
For example, a clustering algorithm might generate a
small set of disconnected vertices selected from a large
graph. A PageRank algorithm might simply output
the vertices and their rank value.

Pregel model defines three most important api as the fol-
lowing:

Message Passing Each Vertex class implements Com-
pute() method. The framework guarantees that all
the messages sent to the vertex will be passed to the
Compute() method of the vertex. The framework
will call theCompute()method of each vertex to pro-
cess the state of the vertex. The Compute() method
is also a place at which the vertex sends messages to
other vertices. Each vertex sends a message to its
neighbor via the neighbor vertex’s id.

Combiner Like the MapReduce framework, Pregel also de-
fines a Combiner concept. The Combiner is used
to reduce the messages that sent to the same desti-
nation vertex. For example, a vertex receives integer

502

messages and that only the sum matters, the system
can combine several messages intended for a vertex
into a single message containing their sum, reducing
the number of messages that must be transmitted and
buffered. Combiner is defined by user by subclass-
ing the Combiner class and override a virtual Com-
bine() method. Combiner comes in place at before
each worker sending messages to reduce the number of
messages transmitted and after the worker receiving
messages to reduce the number of messages buffered.

Aggregator Aggregators are mechanism for global commu-
nication, monitoring, and data. Each vertex provides
a value to an aggregator in super step S, then the mas-
ter combines those values using a reduction operator,
and the resulting value is sent to all vertices in workers
in super step S + 1.

There are implementations of Pregel model such as Giraph
and GPS. Apache Giraph [4] is an open source implementa-
tion of Pregel that runs on standard Hadoop infrastructure.
Giraph uses ZooKeeper [12] for fault-tolerance controlling
and coordinating workers. Workers process computation of
vertices in sequence. GPS [3], stands for Graph Process-
ing System, is another Java based implementation of Pregel
model. Instead of building on top of Hadoop system like
Giraph, GPS is created from scratch. GPS uses Apache
MINA [13], a network application framework, for workers
communication.

2.2 Propose Optimization for Pregel Model
Although Google Pregel is a suitable framework for pro-

cessing large graph in distributed system, there are still opti-
mizations that we can implement to make the model better
performance. We propose two additional features: an op-
timization of sending messages between workers to reduce
network I/O, and a dynamic re-partitioning mechanism to
reduce messages traffic during computation. In the next
section, we will explain our system, X-Pregel, as well as two
new features in X-Pregel for optimizing performance of the
system.

3. X-PREGEL SYSTEM
X-Pregel is a Pregel-Like message-passing model which is

implemented by X10, a state-of-the-art programming lan-
guage for distributed and parallel computation. In section
3.1, we will describe the X-Pregel system in general, in Sec-
tion 5.2 we describe about the implementation of optimiza-
tion method of exchanging messages among workers, and
in Section 5.3 we describe the implementation of our new
dynamic re-partitioning scheme.

3.1 Overall Architecture
The architecture of X-Pregel is shown in Figure 2. As

in Pregel, X-Pregel follows the topology of master-workers.
There is only one master to control global synchronization
among workers, global field, whereas there are many work-
ers,
W1 . . .Wk, to process the computation in distributed man-
ner. The X10 language provides a convenient class, called
PlaceLocalHandle, to access to object in another places. In
X-Pregel, master and all workers share a same PlaceLocal-
Handle object. By using PlaceLocalHandle, the master is
easier to coordinate all the workers. In X-Pregel, workers

Figure 2: X-Pregel System

and master can run HDFS (Hadoop Distributed File Sys-
tem) or NFS (Network File System). Users can switch the
file system between HDFS and NFS. We next explain how
the input graph is partitioned across workers, and the mas-
ter and worker implementations in the next sections.

3.1.1 Input Graph Partitioning Across Workers
When an X-Pregel application starts, the master place

reads a configuration file from HDFS or NFS. A configura-
tion file contains information of location of the split input
graph file on HDFS or NFS. The master then sends these in-
formation to the workers. The workers open the split graph
file, read the graph and initialize the vertices for partition-
ing. The input split graph file has simple format: each line
starts with the ID of a vertex u, followed by the IDs of
u’s outgoing neighbors. The input split graph file may op-
tionally specify values for the vertices and edges. X-Pregel
assigns the vertices of the graph to workers using the sim-
ple round-robin scheme used by Pregel: vertex u is assigned
to worker W(u mod k). X-Pregel also supports optionally
re-partitioning the graph across workers during the compu-
tation, described in Section 3.3.

3.1.2 Master and Worker Implementation
The master and worker are similar to Pregel [1]. The mas-

ter coordinates the computation by instructing workers to
do: (a) start reading split input files; (b) start a new super
step; (c) terminate computation. The master awaits notifi-
cation from all workers before instructing workers what to do
next, and so serves as the centralized location where work-
ers synchronize among supersteps. In X-Pregel, the master
also decides which worker has the right of re-partitioning its
vertices when the dynamic re-partitioning mode is activated.
The dynamic re-partitioning mechanism will be described in
Section 3.3.

In X-Pregel, workers store vertices and buffer of messages
for the current and next superstep in memory. To leverage
the parallel power of the X10 language, each worker also
partition its vertices into subpartitions and processes each
subpartition in parallel. The number of subpartitions is de-
termined by the number of threads which is set through the
environment parameter X10 NTHREADS. For example,
when X10 NTHREADS = 6, the worker partitions its ver-
tices into 6 subpartitions and processes each subpartition in
one thread. This makes the computation of the worker be

503

Figure 3: X-Pregel Message Buffering Mechanism

Figure 4: An AllToAll Example

faster. Each worker maintains two kind of buffer of mes-
sages, one is for the messages to be sent to another worker
in a super step (called the SB, Sender Buffer), and another
is for the messages received from other workers (called the
RB, stands for Receiver Buffer). When the worker executes
each vertex’s compute() method, the vertex then puts the
messages that it emits to the SB. Because worker executes
vertex.compute() in parallel, putting messages to SB should
be an atomic action. This will lead to bottleneck and slow
down the computation at each worker. To solve this prob-
lem, each subpartition has its own buffer of messages (called
SSB, stands for Sub Sender Buffer) to store the messages
emitted by its vertices, and when the process of computa-
tion (which is in parallel) is finished, the worker then loops
through its subpartitions and copies each subpartition’s SSB
to SB. Figure 3 shows this mechanism in X-Pregel.
In X-Pregel, the workers send messages to each other by

using MPI mechanism. Each worker is a member of a Team,
and has a reference to the Team instance. The Team li-
brary provides convenient methods such as alltoall() and
alltoallv() for collective communication. Collective commu-
nications is suitable for the scenario of exchanging messages
among workers in Pregel. For example, when 4 workers want
to exchange messages to each other, the workers then call
team.alltoallv() methods, passes the buffer of messages to
the method. The Team will take care of the synchronization
and deliver all the messages to the workers exactly. This
makes the implementation of exchanging messages among
workers be simpler. Figure 4 describes the alltoall() mecha-
nism.

3.2 Optimization Method of Sending Messages
among Workers

In Pregel model, vertex sends messages to other vertices.
The method of sending message can be described as the
following:

• In the compute() method, the vertex loops through its
neighbors list, creates a structure data like [message-
value, destination-vertex-id], and puts this data to the

buffer associates with the worker that contains the des-
tination vertex id.

• When a buffer of a destination worker is filled by all
vertices, the worker then sends that buffer to the des-
tination worker.

• The destination worker receives the buffer, loops through
the buffer to get each structure data, examines the field
destination-vertex-id, and puts field message-value to
the messages list of the destination vertex.

In some graph algorithm such as PageRank, the vertex sends
the same message (the vertex’s current page rank value) to
its neighbors. In the method we explained above, the same
message is put to the buffer data many times. In other
words, the buffer data contains many replicas of the same
message, each replica for a destination vertex. We con-
sider that in this scenario, the idea of reducing the num-
ber of replicas of message is necessary, especially when the
system needs to process graph with dense communication
between vertices. We propose an optimization method of
sending messages among workers. In our proposed optimiza-
tion method, instead of sending messages out along outgo-
ing edges to its neighbors the vertex sends messages to the
workers where its neighbors locate on and let these work-
ers deliver the messages to the destination vertices. Because
the number of workers where the neighbors locate on is much
less than the number of the vertex’s neighbors,especially for
dense graph, the number of messages which is sent out by
the vertex reduce to many times. The optimization method
give us three benefit: (a) Instead of looping through the
neighbors list to send message to each neighbor, the vertex
just loops through the workers that contain its neighbors,
and sends messages to these workers, this can improve the
computation run-time; (b) the number of message that the
vertex put to buffer reduces, hence the buffer store fewer
messages and memory usage is improved; (c) workers ex-
change fewer messages over network, hence this can improve
network traffic significantly.

3.3 Dynamic Re-partitioning Scheme
Dynamically re-partitioning vertex during computation

can reduce the communication between workers, then can
improve the performance of the system. We need to devise
a dynamic re-partitioning mechanism that effectively reas-
signs vertices to new workers in order to reduce number of
messages sent over network. We propose a new dynamic
re-partitioning scheme in which vertex is chosen to reassign
to the new worker bases on the statistic information on the
number of messages the vertex receives/sends from/to work-
ers. We consider that when workers repartition vertices to
each other at the same time without sharing the information
of adjacent lists of the reassigned vertices can lead to bad
result of partition. There are two approaches to solve this
problem. The first one is that before reassigning vertices
to each other, the workers should share the adjacent lists of
the vertices that they intent to reassign to each other. It
means that the workers should exchange the adjacent lists
of these vertices to each other before actually reassign these
vertices. It may cause overhead of network traffic. Further-
more, the worker needs to check the vertices that it intent
to reassign based on the adjacent lists it receives to make
sure that after reassigning these vertices to other workers,

504

network traffic will be reduced. This is a time-consuming ac-
tion. The second approach is that there is one worker should
reassign the vertices to other worker at a time. Because the
worker knows the adjacent lists of the vertices it intent to
reassign to other workers, the worker can effectively check
that after reassigning these vertices to the new workers the
network traffic will be reduced. In the second approach, re-
partitioning vertices happens in one worker, then there is no
need for exchanging additional adjacent lists among workers.
There are still one issue with the second approach: because
there is one worker to repartition vertices to other workers
at a time, the worker that processes re-partitioning has less
vertices than other workers, so this may lead to the imbal-
ance among workers. We can solve this issue by : (a) letting
the worker that has most vertices process re-partitioning ver-
tices to other workers; (b) limiting the number of vertices a
worker can reassign to other workers.

4. PERFORMANCE EVALUATION

4.1 Experimental Setup

4.1.1 Experimental enviroment
We use 4 nodes as our distributed system for our experi-

mental environment. Each node has Intel(R) Xeon(R) CPU
X5760(2.93GHz, 6 cores, 2 sockets), with memory 48GB,
and CentOS 5.4 as the Operating System. Each node is con-
nected with each other by an 1Gb Ethernet cab. We use X10
newest version (Version 2.3.0) with customized Team library.
When we compile the X-Pregel app, we use optimized op-
tions such as -x10rt mpi -O -define NO BOUNDS CHECK.

4.1.2 Experimental Data
We use Kronecker Graph [2] for our experimental. Kro-

necker graph is used by Graph500 benchmark [14], and we
use the graph generator provided by Graph 500 to gener-
ate our data set. Kronecker Graph has the characteristic of
scale free and cluster like large graph, and is similar to social
graph. In our experimental, we use the SCALE unit defined
by Graph500 to describe the size of the graph. SCALE is
defined by the index of number of vertices of the graph. It
means that the number of vertices is 2SCALE. We are using
Kronecker Graph with SCALE from 14 to 20, which means
the number of vertices is from 4,096 to 1,048,576. The num-
ber of edges is defined by the generator matrix, and is dif-
ferent due to each generated graph. The size of each graph
is described as the following table. 1.

4.2 Performance of Processing Graph on Multi
Workers

In this experimental, we evaluate the performance of X-
Pregel on processing large graph in multiple workers and
places. We choose PageRank and SSSP (Single Source Short-
est Path) as the algorithm for processing graph. We choose
Kronecker Graph with scale 20 as target dataset. We run in
turn the PageRank algorithm and SSSP algorithm on 1 node
with 2 places, 2 nodes with 4 places, 3 nodes with 6 places
and 4 nodes with 8 places. We run the PageRank algorithm
in 30 iterations, whereas we run the SSSP algorithm until
all the vertices’ shortest path are calculated. We calculate
the runtime for each case when we run the algorithm.
Figure 5 shows the result when we run PageRank algo-

rithm on multiple nodes and places. It is obvious that the

Figure 5: Performance of PageRank on Kronecker
Graph scale 20

Figure 6: Performance of SSSP on Kronecker Graph
scale 20

runtime decreases when the number of nodes and places are
increased. When running the algorithm in one node with 2
places, one master place and one worker place, the runtime
takes about 2000 seconds. When running in two nodes with
4 places, one master place and three worker places, the run-
time decreases about 4 times to 500 seconds. The runtime
when we run the application in 4 nodes and 8 places is 1.3x
faster than running in 3 nodes, 2.0x faster than running in
2 nodes and 7.0x faster than running in 1 node.

Figure 6 shows the result when we run SSSP algorithm on
multiple nodes and places. For the Kronecker Graph Scale
20, the algorithm finishes at 8th iteration. Like when we run
PageRank algorithm, the runtime also decreases when we
increase the number of nodes and places. This experiment
demonstrates that our system is scalable when processing
large graph on multiple nodes. Next we will experiment to
evaluate the performance of optimization method of sending
messages against the traditional method of our system as
well as against other Pregel implemented system such as
GPS and Giraph.

4.3 Performance of Optimization Method of
Sending Messages among Workers

In this experiment, we evaluate the performance of an op-
timization method of sending messages in comparison with
the traditional method. We ran PageRank in 30 iterations
on the Kronecker Graph with scale from 14 to 20 on 4 nodes
with 8 places. The number of workers is 7. We calculate the

505

Table 1: Kronecker Graph
Kronecker Graph SCALE 14 SCALE 15 SCALE 16 SCALE 17 SCALE 18 SCALE 19 SCALE 20
Number of vertices 16,384 32,768 65,536 131,072 262,144 524,288 1,048,576
Number of edges 524,288 1,048,576 2,097,152 4,1954,304 8,388,608 16,777,216 33,554,432

Figure 7: Comparison of Performance of Optimiza-
tion Method and Default Method

Figure 8: Comparison of Network IO at each super-
step

runtime overall and network io at each superstep in each
method. Figure 7 shows the runtime comparison between
two methods. It is obvious that the optimization method
gives a better performance, especially when processing large
graph. It is because when processing large graph, network
io has great influence on the overall performance, and the
optimization method aims to improve network I/O. For Kro-
necker Graph Scale 18,19,20 the optimization method gives
1.5x runtime improvement in comparison with the default
method.
Figure 8 shows that the optimization method gives 10x

network I/O improvement in comparison with the default
method. We also compare the runtime of processing su-
persteps of optimization method of sending messages, the
default of our system against GPS and Giraph. The result
is shown in Figure 9. The result shows the default method
has the same performance as Giraph and is slower than GPS
when processing SCALE20 Kronecker Graph, the optimiza-
tion method of sending messages gives best performance in
comparison with GPS and Giraph.

4.4 Performance of Dynamic Re-partitioning
Scheme

In this experiment, we run PageRank algorithm in 30 it-
erations with dynamic re-partitioning on Kronecker Graph

Figure 9: Runtime comparison with GPS and Gi-
raph

Scale 18, Kronecker Graph Scale 19, Kronecker Graph Scale
20. We calculate the number of messages sent over the net-
work at each superstep. The result is shown in Figure 10.
In all three Kronecker Graphs, the dynamic re-partitioning
effectively reduce the number of messages during iteration
of supersteps.

We also compare the overall runtime when running PageR-
ank algorithm with and without dynamic re-partitioning,
and the result is shown in Figure 11. Although dynamic
re-partitioning succeeded in reducing the number of mes-
sages sent over network, dynamic re-partitioning also incurs
network I/O overhead by sending vertex data to new work-
ers, and runtime overhead deciding which vertices should be
reassigned to new worker. According to the result, in 30
iterations the overhead exceeds the benefits.

Figure 11: Runtime

5. DISCUSSION
The optimization method of sending message obviously

improves the performance in the scenario that a vertex sends
the same message to all its neighbors. The optimization
method reduces the number of messages sent out by a vertex
to the number of workers that contains the vertex’s neigh-
bors. As shown by the result in the previous chapter, when
comparing with the default sending messages, the optimiza-

506

(a) Dynamic Re-partitioning on Kronecker Graph
Scale 18

(b) Dynamic Re-partitioning on Kronecker Graph
Scale 19

(c) Dynamic Re-partitioning on Kronecker Graph
Scale 20

Figure 10: Result of dynamic re-partitioning on different Kronecker Graph

tion decreased the network IO to 10 times. But there is
a tradeoff of our proposed method. When we increase the
number of workers, the network I/O improvement ratio may
degrade because the decrease of the number of neighbor ver-
tices a worker contain for a vertex. In our experimental
environment setting, the networking is fast, so a 10x im-
provement on network I/O just results only 1.5x runtime im-
provement. However, in settings where networking is slow,
benefit from network I/O should yield significant runtime
improvement.
Although the new dynamic re-partitioning scheme effec-

tively reduces the network traffic during iteration of super-
steps, the overhead of it still exceeds the benefits. As we
mentioned about, an 10x improvement on network I/O just
results only 1.5x runtime improvement, because there is only
one worker at a time to process the re-partitioning then the
decrease in network I/O take places slowly.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced two optimizations for large

scale graph processing Pregel model, an optimization method
of sending messages that give better performance when pro-
cessing dense graph, and a new dynamic re-partitioning scheme
which effectively reassigns the vertex during computation in
order to reduce network traffic. We also presented X-Pregel,
our implementation of the Pregel model with our proposed
optimizations by using X10, a state-of-the-art language for
distributed and parallel computation.
As future work, we will optimize our new dynamic re-

partitioning scheme to let it re-partitions the vertices faster,

hence improves the overall runtime of the system. On the
other hand, we also plan to extend X-Pregel an incremental
interface for incremental graph processing. We want to pro-
cess time-evolving large scale graph such as social network
graph (Facebook, Twitter), so incremental graph processing
is important because we have to process the graph again
and again. An Incremental interface will improve the per-
formance of the system because it let the system just to
re-compute on the necessary partition of the graph.

7. REFERENCES

[1] Grzegorz Malewicz, Matthew H. Austern, Aart J. C.
Bik, James C. Dehnert, Ilan Horn, Naty Leiser , and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010
international conference on Management of data,
SIGMOD ’10, pages 135–146. ACM, 2010.

[2] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg,
Christos Faloutos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks.
pages 985–1042, 2010.

[3] Semih Salihoglu and Jennifer Widom. Gps: A graph
processing system. Technical report, Stanford
University.

[4] The Apache Software Foundation. Apache incubator
giraph. http://incubator.apache.org/giraph/.

[5] Sanjay Ghemawat Jeffrey Dean. Mapreduce:
simplified data processing on large clusters. In
Proceedings of the 6th conference on Symposium on

507

Operation Systems Design & Implementation - Volume
6, OSDI’04, pages 10–10.

[6] Yahoo. Apache hadoop. http://hadoop.apache.org.

[7] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. In
COMPUTER NETWORKS AND ISDN SYSTEMS,
pages 107–117. Elsevier Science Publishers B. V.,
1998.

[8] C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster
computing. pages 519–538, 2005.

[9] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. The x10 reference manual. 2010.

[10] U. Kang, Charalampos E. Tsourakakis, and Christos
Faloutsos. Pegasus: A peta-scale graph mining system
- implementation and observations, 2009.

[11] Leslie G. Valiant. A bridging model for parallel
computation, 1990.

[12] The Apache Software Foundation. Apache zookeeper.
http://zookeeper.apache.org/.

[13] The Apache Software Foundation. Apache mina.
http://mina.apache.org/.

[14] Graph 500 Steering Committee. Graph500.
http://www.graph500.org/.

508

