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ABSTRACT
Although there are numerous websites that provide recom-
mendation services for various items such as movies, music,
and books, most of studies on recommender systems only
focus on one specific item type. As recommender sites ex-
pand to cover several types of items, though, it is important
to build a hybrid web recommender system that can handle
multiple types of items.

The switch hybrid recommender model provides a solution
to this problem by choosing an appropriate recommender
system according to given selection criteria, thereby facili-
tating cross-domain recommendations supported by individ-
ual recommender systems. This paper seeks to answer the
question of how to deal with situations where no appropri-
ate recommender system exists to deal with a required type
of item. In such cases, the switch model cannot generate
recommendation results, leading to the need for a fallback
model that can satisfy most users most of the time.

Our fallback model exploits a graph-based proximity search,
ranking every entity on the graph according to a given prox-
imity measure. We study how to incorporate the fallback
model into the switch model, and propose a general archi-
tecture and simple algorithms for implementing these ideas.
Finally, we present the results of our research result and
discuss remaining challenges and possibilities for future re-
search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information filtering, Retrieval

models

General Terms
Algorithms, Design, Experimentation

Keywords
Recommender Systems, Fallback Model, Proximity Search

1. INTRODUCTION
In recent years, recommender systems (RSs) have received

a lot of attention from both industry and academia. This
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interest has been spurred on by a number of commercial suc-
cess stories in the field such as [15] and [5], and has led to
a number of significant studies about effective recommenda-
tion models such as content-based filtering (CB), collabora-
tive filtering (CF), and matrix factorization (MF) [1, 12].

One of main development issues facing the next genera-
tion of RSs is flexibility [1]. Most of the recommendation
algorithms running RSs are hard-wired into the system by
the system administrators and therefore support only a pre-
defined and fixed set of criteria. However, the expansion of
web services across several domains means that, more and
more, different types of entities will co-exist within a single
database.

The switch hybrid recommendation model [4] provides one
possible solution to this problem. According to [4], a switch-
ing hybrid RS is one that selects a single recommender from
among its constituents based on the recommendation situ-
ation. Although their study was limited to a single type of
entities, we can easily apply this concept to our problem.

The integration of the switch model and the fallback model,
however, provides a more complete solution. Algorithm 1
shows how a switch model could be used to select an ap-
propriate RS according to its target type, such as movies,
music, or books. However, if no RS exists that deals with a
certain type of item, a fallback model is needed to complete
the final else statement in the algorithm.

In this paper, we present several research topics and their
possible solutions. Our main problems are as follows:

Algorithm 1 An example of a hybrid recommender system
using the switch model and our fallback model. The switch
model can be represented by if and elseif statements. The
notion of the fallback model is the final else statement.
Input: u, active user
Input: τ , target type of recommentation
1: RS = null
2: if τ = movie then
3: RS = getMovieRS() ⊲ domain knowledge
4: else if τ = music then
5: RS = getMusicRS() ⊲ domain knowledge
6: else if τ = book then
7: RS = getBookRS() ⊲ domain knowledge
8: else
9: RS = getFallbackRS() ⊲ fallback
10: end if
11: return RS.getRecommendationResults(u, τ )

389



• We study how to implement a fallback model for hy-
brid RSs. Our approach to this problem is to exploit
a graph-based proximity search.

• We explore how to incorporate the fallback model into
an existing system, with particular importance given
to the need for the fallback model to only be considered
if there are no existing RSs for a given item type. Our
approach is to build a meta-hybrid model (named K-
FIRST) between existing hybrid RSs and a fallback
model that assigns higher priority to existing RSs.

To resolve the aforementioned challenges, we propose a
graph-based recommendation framework named GraphRS
(pronounced“graphers”). The rest of this paper will be spent
describing the architecture and simple algorithms needed to
implement these ideas and exploring experiment data that
demonstrates the effectiveness of the proposed system.

2. RELATED WORK
In terms of a fallback model, few methods related to the

one employed for this study exist because this paper is the
first to employ the notion of a fallback model. A simple and
intuitive means of implementing a fallback model is to al-
ways recommend popular items regardless of the target type.
However, the popularity-based fallback model does not con-
sider the user’s personal preferences. In our experiments,
this type of fallback model is employed as a baseline against
which to judge the performance of our proximity-based fall-
back model in terms of recommendation accuracy.

Proximity search is a classic framework for ranking entities
in a graph. A database can be viewed as a graph, with data
in vertices (entities) and relationships indicated by edges.
Therefore, we can compute the proximity of every pair of
entities in the graph. Goldman et al. proposed a simple
proximity measure that utilizes the shortest-path distance
[7]. In our experiments, we implemented a representative
existing proximity measure called Personalized PageRank
(PPR) [16]. The PPR vector for a query vertex q can be
calculated as follows:

~r = cT~r + (1− c)~q (1)

where ri is the score of node vi, c is a damping factor con-
stant that is normally given as 0.85, T is a transition matrix
and ~q is a query vector where qth element is 1 and the others
are 0. PPR calculates the node authority value, but adjusts
the score with a personalized bias. A bipartite graph-based
example can be found in [14].

Actually, a number of methods exist for measuring prox-
imities between entities in a graph. Jeh et al. [10] proposed
a pairwise random walk-based ranking method, and Balmin
et al. [3] presented a method to measure proximities be-
tween different types of entities in a database. In [18] and
[13], paths on the graph given by administrators are used to
their proximity measures. Recently, Shi et al. [17] conducted
a study on the relevance in a heterogeneous information net-
work.

These studies mainly focus on determining good proximity
measures in order to build a new recommendation model.
However, we concentrate on how to exploit those proximity
measures as a fallback model. Therefore, our fallback model
can incorporate all of the proximity measurement methods
that we have mentioned.

GraphRS

GraphRS

Figure 1: Architecture of GraphRS

3. PROPOSED APPROACH
In this section, we outline the architecture of the GraphRS

system that incorporates the fallback model into an existing
operational system.

Figure 1 provides a visual of the conceptual architecture
of GraphRS. Businesses usually have an operational sys-
tem which has a database and several business modules.
One of business modules may be a recommendation module.
GraphRS can be integrated with the existing recommenda-
tion module by a client API.

GraphRS consists of a client API and server system. The
role of the client API is to send a query request and receive
results. Most of the query processing steps take place in the
server system. The client API is a wrapper for this process.
A query is delivered to the server via HTTP requests and the
server returns the results as a HTTP response. Therefore,
the client and the server can both be placed in a single ma-
chine or distributed machines over a network, allowing the
recommendation service to be provided as an independent
system like a data warehouse.

The server system has two sub-modules, namely, Graph-
Manager and QueryProcessor. GraphManager handles two
responsibilities for the system: First, it analyzes the op-
erational database in order to create an entity-relationship
(ER) graph1, which is used to copute the fallback proximity
scores; and second, it manages knowledge models which refer
to existing RSs. Therefore, knowledge models conceptually
populate new types of edges on the ER graph.

QueryProcessor exploits both the knowledge models (ex-
isting RSs) and the fallback model (a proximity-based RS).
Although the fallback model enables the recommendation
of different types of entities, the accuracy of the proximity
search is sometimes unpredictable. Knowledge models, on
the other hand, can be optimized ahead of time, yet are only
available for specific types of recommendations. Therefore,
QueryProcessor assigns higher priority to knowledge models.

1In this paper, we distinguish between an ER graph and a
heterogeneous graph. An ER graph refers to a graph created
from the underlying database, while a heterogeneous graph
refers to an extended ER graph having additional types of
edges indicating different RSs.

390



We define the Knowledge-FIRST (K-FIRST) meta-hybrid
model as follows:

K − FIRST (Q,v) =
∑

q∈Q

(w(q) · (K(q, v) + P (q, v))) (2)

The K-FIRST model represents a recommendation score
between user query Q and vertex v in the ER graph, where
Q = {q|q ∈ V } and v ∈ V . The weight of query entity q

is determined by the function w(q) where
∑

q∈Q w(q) = 1.

K(q, v) and P (q, v) indicate scores generated by the knowl-
edge model and the proximity-based fallback model respec-
tively. More details on the K-FIRST model are discussed in
Section 4.2.

4. METHODOLOGY

4.1 Graph Construction
We first explain how GraphManager converts the opera-

tional database into an ER graph. Figure 2 shows an exam-
ple using the MovieLens dataset2. Let D be an operational
database (a). We analyze foreign key constraints in D in
order to create schema graph SG (b). Finally, we create an
instance-level ER graph from SG (c).

Figure 2: Example of Graph Construction Using the
MovieLens Dataset

In (a), relations are connected by foreign key constraints.
A foreign key consists of a referencing relation and a refer-
enced relation. For example, RATING is a referencing re-
lation, whereas USER and MOVIE are referenced relations.
Referencing columns are marked (FK).

In (b), schema graph SG is derived from (a). We can
obtain SG by registering a referenced relation as a vertex
and a referencing relation as an edge. Algorithm 2 shows
how to create a schema graph from a relational database.
We first derive RV and RE from foreign key constraints in
D. We also define function H from RE to a power set of
relations in D. This function returns a set of referenced
relations to a given referencing relation. We then create an
edge for each pair of relations in H(r).

It is worth mentioning that we include relation r in H(r) if
the relation is an element of RV (lines 5-7). This is because
a relation in a database can be both a referencing relation
and a referenced relation. In (a), we have USER, AGE and
RATING relations. The relation AGE is only a referenced
relation where as the relation RATING is only a referencing
relation. However, the relation USER is both a referencing
and a referenced relation. In this case, H(USER) contains

2http://www.grouplens.org/

Algorithm 2 Creating a schema graph from a relational
database
Input: RV , a set of referenced relations in a database
Input: RE , a set of referencing relations in a database
1: V=RV

2: E={}
3: for each referencing relation r in RE do
4: H(r) = a set of referenced relations of r
5: if r is an element of RV then
6: Add r to H(r)
7: end if
8: for each pair of relations (r1, r2) in H(r) do
9: Add e=(r1, r2) to E

10: end for
11: end for
12: return SG=(V ,E)

only a relation AGE so the algorithm cannot make an edge
between USER and AGE. This is why we need lines 5-7 in
Algorithm 2.

In (c), we finally obtain the ER graph. In this graph, each
tuple in the referenced and referencing relations is translated
into either a vertex or an edge respectively. For example, the
graph shows us that“user:1” is a 24-year-old technician who
watched“movie:1”. We can obtain this graph by performing
full table scans for all relations in D.

We applied this algorithm to the MovieLens-100K data
set. The dataset contains 100,000 ratings of 1,682 movies
from 943 users, with each user having rated at least 20
movies. In a schema graph, RV contains the set of relations
{movie, genre, user, age, occupation}. RE includes the set
of relations {movie− genre, rating, user}. As a result, the
number of vertices in the graph is 2,732 and the number of
edges is 210,416. The graph has symmetric edges. Exper-
imental results on the graph are demonstrated in Section
5.

4.2 Query Processing
The GraphRS system allows system administrators to ac-

cess several knowledge models. Hence, K(q, v) can be com-
puted using a weighted sum of an individual model score. In

other words, K(q, v) =
∑|M|

i=1
w(Mi)·Mi(q, v) where Mi(q, v)

is a score on the edge q
type=Mi−−−−−−→ v. Weights can be deter-

mined by machine learning techniques such as [11], but this
is out of scope of this paper.

Algorithm 3 K-FIRST hybrid model for knowledge and
fallback models
Input: Q, a set of querie entities
1: K-FIRST(Q, v) = 0 for all v ∈ V

2: for q ∈ Q do
3: for v ∈ V do
4: K(q, v) =

∑|M|
i=1

w(Mi) ·Mi(q, v)
5: if K(q, v) 6= 0 then
6: P (q, v) = PPR(q, v)
7: end if
8: end for
9: K-FIRST(Q, v) += w(q) · (K(q, v) + P (q, v))
10: end for
11: return v ∈ V in descending order of K-FIRST(Q, v)
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Figure 3: Comparison of Fallback Models Applied
to the New User Problem

K-FIRST assigns higher authority to knowledge models
than it does to the proximity model so that, for a single q

in Q, the proximity cannot change rankings determined by
the knowledge model. However, the proximity model can
contribute to an overall ranking that takes all query entities
and their weights into consideration. This derives the fol-
lowing definition of P (q, v), that P (q, v) = 0 if K(q, v) 6= 0,
otherwise P (q, v) = PPR(q, v).

Given a set of query entities Q, Algorithm 3 shows how
a system obtains the hybrid recommendation score for all
v ∈ V . For each q, we evaluate K(q, v)+P (q, v), and finally
obtain the weighted sum of the hybrid results.
Online Top-k Query Processing: Efficient top-k compu-
tation is also important for the K-FIRSTmodel because RSs
have to deal with hundreds of thousands of recommendation
requests. Each request consists of one or more query enti-
ties, and each of them can be involved in several knowledge
models. Let us suppose that each knowledge model has its
own top-k mechanism, which implies that we have several
sorted lists that contain the results of knowledge models.
The computation of top-k K(q, v) can then be viewed as a
traditional top-k query processing problem as is familiar in
the database research field [9]. The NRA (No Random Ac-
cess) algorithm [6] in particular may provide a solution to
our problem. Top-k PPR algorithms have also become avail-
able as of late for P (q, v) [8, 2]. Finally, the computation of
K(q, v) + P (q, v) can be solved by nested NRA.

5. RESULTS
We will now evaluate the effectiveness of the proposed

approach with several experiments.

5.1 Comparison of Fallback Models
First of all, we show how the proximity-based fallback

model helps an existing RS. The new user problem is a typ-
ical scenario where a hybrid model can be useful. We pre-
pared a CF-based knowledge model using a partial set of
users and assumed that this is the only knowledge model
that we have. We then use the model if it is available, but
otherwise several fallback models are employed. Therefore,
the importance of the fallback models increases as the ratio
of new users increases.

In Figure 3, we examine three fallback models: 1) no
fallback; 2) popularity-based fallback (POP); 3) proximity-
based fallback (PPR). The graph shows that the precision
of the no-fallback model decreases sharply while those of
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Figure 4: Example Application to Identify Users Us-
ing the Proximity-based Fallback Model

POP and PPR models fall off much more slowly. Moreover,
PPR outperforms the POP scheme because POP only pro-
duces a static list of movies. This experiment assumes only
a user-movie recommendation service. However, in reality
there are tens of thousands of different web services in use.
Therefore, the fallback model is most useful when a RS needs
to support several recommendation services.

5.2 Applications Using Fallback Models
The proximity-based fallback model has numerous appli-

cations. For instance, we can identify an active user by using
a set of movies that the user already has seen. This implies
that an online shopping site can characterize a guest user by
examining a short sequence of item page views. In this ex-
periment, we assume that there are no prepared knowledge
models for this problem. Therefore, the performance totally
depends on the proximity-based fallback model.

To conduct the experiment, we first delete the active user’s
entire ratings history and then compute the PPR of all
movies and registered users. After that, we issue a query
consisting of five movies which were in the active user’s rat-
ings. We determine whether an active user is hit or not by
examining whether the user appears in a top-k list. This
process is repeated for all 943 users in the dataset. The ex-
perimental result represented in Figure 4 shows that almost
40% of users are hit in top-10 out of 943 users. Even though
the fallback model is not the best solution for a specific
problem, it handles most problems reasonably well.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a proximity-based fallback

model for existing hybrid RSs. The necessity of fallback
models was shown by giving motivating examples and refer-
encing existing research. We presented the GraphRS system
that utilizes the fallback model. In the system, existing RSs
are adopted as knowledge models, and the knowledge models
are integrated with the fallback model using a meta-hybrid
(K-FIRST) model.

The fallback model choice is an important aspect of our
approach. One of the simplest solutions is to use a popularity-
based fallback model. However, popular items are hard
to personalize, so we instead exploit graph-based proxim-
ity search techniques as a fallback model.
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We expect further research will lead to significant im-
provements. Still, there are remaining issues that we plan
to tackle in future work as follows:
Learning to Rank for K-FIRST: Different weights on
query entities and knowledge models should be considered
in order to improve recommendation accuracy. For instance,
collaborative filtering and matrix factorization techniques
can be integrated according to their weights. Sometimes, the
end-user may be able to select a specific knowledge model
that satisfies their requirements. Different weights on query
entities are also needed. For example, user entities should
be assigned a high weight in order to produce personalized
recommendation results.
Novel Proximity Measure and Efficient Top-K Pro-
cessing on a Large Graph: The notion of a proximity
search is very general. It sometimes refers to the similar-
ity between entities, while at other times referring to the
distance between entities. For the fallback model, a prox-
imity measure that maximizes the average precision among
several domains would be a good solution. In addition, the
computation of a measure has to be efficient.
Recommender Systems into Data Warehouse: The
architecture of GraphRS enables the system to be operated
independently with other business modules. This is similar
to the data warehouse that supports intelligent user services.
We believe that integration between a RS and a data ware-
house will create a synergistic effect.
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