
Mockup Driven Web Development

Edward Benson
Supervised by: David Karger

MIT CSAIL
77 Massachusetts Avenue

Cambridge, USA
eob@csail.mit.edu

ABSTRACT
Dynamic web development still borrows heavily from its origins in
CGI scripts: modern web applications are largely designed and de-
veloped as programs that happen to output HTML. This thesis pro-
poses to investigate the idea taking a mockup-centric approach in-
stead, in which self-contained, full page web mockups are the cen-
tral artifact driving the application development process. In some
cases, these mockups are sufficient to infer the dynamic application
structure completely.

This approach to mockup driven development is made possible
by the development of a language the thesis develops, called Cas-
cading Tree Sheets (CTS), that enables a mockup to be annotated
with enough information so that many common web development
tasks and workflows can be eliminated or vastly simplified. CTS
describes and encapsulates a web page’s design structure the same
way CSS describes its styles. This enables mockups to serve as
the input of a web application rather than simply a design artifact.
Using this capability, I will study the feasibility and usability of
mockup driven development for a range of novice and expert au-
thorship tasks. The thesis aims to finish by demonstrating that the
functionality of a domain-specific content management system can
be inferred automatically from site mockups.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—reuse libraries,
reuse models

General Terms
Design, Human Factors, Standarization

1. INTRODUCTION
The early days of the web combined a simple hypertext format

with a copy-and-tweak culture. People didn’t need to become pro-
grammers to create a web site. They could simply copy a file they
liked and tweak it to reflect their own content. The HTML markup
involved was nearly self evident given an example to modify, akin
to today’s Markdown syntax. The amazing growth and subsequent
success of the web was arguably due, in large part, to the ease of
self expression and publication that simplicity afforded.

Programmers quickly developed the trick of using dynamically
generated web pages as the interface layer to server-side applica-
tions, and the structural complexity of web pages began to rise.
But these new sites were harder to copy and modify; their HTML

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

structure was increasingly created by full-time HTML authors, not
hobbyists, and often with the help of a server-side program. In
response to this growing complexity, CSS was created to separate
structure from style. For years, this new addition to family of web
languages quelled the complexity crisis, preserving HTML as a for-
mat suitable for casual copy-and-tweak publication.

Our growing expectations of form and function have since con-
tinued to inflate the complexity of our web documents, and today
the hand editability of the average HTML page is questionable once
again. We mitigate this complexity with widely deployed applica-
tions and libraries such as WordPress and Twitter Bootstrap, but
these are patches atop the problem rather than solutions. This thesis
is a reaction to the feeling that it is time once again to consider an
addition to the family of web languages to extract and simply cer-
tain aspects of web authoring to tame complexity and drive HTML
back toward an easy copy-and-tweak format.

This thesis focuses specifically on this problem of the relation-
ship between the raw, communicative content of a page and the
structure which scaffolds that content for presentation and storage.
In modern web pages, content is commingled with considerable
design scaffolding that, from the standpoint of raw source edit-
ing, obfuscates and complicates both content authoring and design
tasks. Authors must wade through this complex structure to locate
the content they wish to edit, and designers have to replicate their
design modifications once for each invocation (even, occasionally,
when using template systems, such as the HTML conventions of
Twitter Bootstrap).

The opportunities for improvement with regard to simplifying
the specification of content and structure do not end with static
HTML, however: much of the web, and modern authoring work-
flow, is based on the idea of the Content Management Systems
(CMS) as a provider of WYSIWYG web authoring. But modern
CMSs are sizeable programming accomplishments with their ori-
gins in procedurally defined applications that use HTML as merely
the interface definition language. This results in considerable com-
plexity to provide relatively simple content management opera-
tions. In the case of WordPress, for example, data state is pro-
cedurally replicated separately in HTML, Javascript, PHP, and a
database. The second phase of this thesis aims to show that, by pro-
viding a language which can describe the relationship between con-
tent and structure, we can use HTML mockups as the definition of
a simple content management system, rather than simply the output
format. Such a capability would enable a new paradigm of web ap-
plication construction, mockup driven development, in which the
declarative interface mockup, rather than procedural code, serves
as the backbone of the application definition.

The final piece of this work will address the challenge of tran-
sitioning the population of CMS users to a mockup-driven ecosys-

337



tem. Any technology that provides a replacement for existing meth-
ods faces the reality that switching cost is often high enough to
deter users, even if the benefits are clear.

2. STATE OF THE ART
This thesis draws upon a rich body of work seeking to improve

the web as a platform for content description and application au-
thoring.

Languages and Ontologies. Many language-driven approaches
seek to formalize standard design needs into concise, central vo-
cabularies for reuse. HTML5 and CSS3 for example, are vocabu-
lary expansions (with implementation to back them up) over their
previous versions. While HTML and CSS focus on page design,
other efforts have provided way to demarcate data within the page.
Microformats [12], as well as several prominent Semantic Web
offerings such as FOAF [5] and Good Relations [10] embed data
conforming to domain-specific vocabularies within HTML. Other
efforts, such as RDFa [1] and HTML5 Microdata [11] provide a
general-purpose syntax and abstract data model for embedding ex-
tensible data within HTML. HTML5 Web Components provide a
way to define, resuse, and parameterize custom HTML elements
with a strong layer of encapsulation around them [?]. Our CTS lan-
guage provides similar functionality while providing an additional
layer of indirection that permits more flexibile content reuse.

Frameworks. The Hilda project [19, 18] proposed a declara-
tive web development model in which web assets and operations
on those assets were described by a graphical data structure that
could be reasoned about, and appropriate portions offloaded onto
the client for processing. This provided one model for achieving
an automated solution to the problem of balancing load between
clients and servers. The FORWARD (App2You) project[13, 8] pro-
pose a model that removes the controller from the traditional MVC
design. It adds declarative extensions to XHTML that, along with
embedded SQL, enable users to query a remote database and bind
the results to pre-packaged widget invocations, like a Google Map,
with no application code necessary.

Design Tools. Several projects from the HCI community have
begun to explore ways to mitigate the complexity of modern web
programming. Sensemaking approaches like WebCrystal [6] and
FireCrystal [17] help authors understand why a fragment of a web
page appears or behaves as it does so that they can repurpose it.
And recently even static analysis methods for HTML and CSS have
emerged [9]. We take these as evidence that the current web pro-
gramming model results in applications whose complexity exceeds
our ability to understand them without software assistance.

Other tools take novel approaches to web design tasks. WYSI-
WYG editors and mockup tools are the canonical example, but
more recent work has focused on retargeting, which is a common
practice that until recently was only done by hand. CopyStyler [7]
interactively helps users retarget entire pages with an interface that
places them side-by-side. Bricolage [15] uses machine learning to
perform page-level retargeting automatically. Its model is trained
to find equivalences between blocks of content based on features
about their positioning, style, and text contents.

XML to RDBMS. User interfaces are inherently hierarchical,
and thus so are the languages (like HTML) that describe them. Re-
gardless of a data source’s source model, by the time it interacts
with HTML it must be projected into hierarchical space. Never-
theless, back-end data models are often relational in nature. The
literature suggests that XML documents can be used to derive a
compatible relational structure to describe them [14, 2]. This sug-
gests that it might be possible to completely automate the transla-

tion layer between databases and web pages for web applications
with little domain-specific business logic in between.

3. PROPOSED APPROACH
This thesis develops the idea of mockup-driven web develop-

ment (MDD) as an approach through which to improve the au-
thoring and reuse of web content. Mockup driven web develop-
ment turns the CGI model of web applications on its head: declara-
tive user interface mockups, rather than the procedural application
code, are the central conveyor of application structure. Given an
HTML mockup with light-weight declarative annotations, an MDD
system should be able to provide both static and dynamic web au-
thors with benefits. It should allow static authors to cleanly sepa-
rate their written content from the mockup scaffold which describes
the structure of its presentation. For dynamic offers, the mockup
should contain enough information to automatically provide a wide
range of functionality that today is implemented by hand, such as
basic content management operations, importing and caching dy-
namic structured data, and theming and data sharing capabilities.

I propose to develop this approach by beginning with basic ques-
tions of system and language design to enable this style of de-
velopment. I will then study how this architecture affects static
web authoring usability, develop performance and automation al-
gorithms capable of using mockups to replace CMS functionality,
and finally develop a means to transition current CMS users to a
mockup-driven environment. Together, these four pieces of work
will provide a clear picture of the feasibility of mockup-driven de-
velopment as a model for web development, what its practical limi-
tations are, and where high-value opportunities lie for future work.

One might ask, “why focus so much effort on low level HTML
editability”? First, despite the popularity of content management
systems, authoring and maintaining static HTML content is still
common: personal home pages, research group and project pages,
university course pages, academic resumes, self-hosted content,
and so on. Second, I aim to show that many dynamic web appli-
cations can express much of their design and functionality in terms
carefully constructed, low-level HTML, making it a relevant format
even for professional programmers. Finally accessibility of HTML
remains important even in a world where WYSIWYG editing sys-
tems dominate, because HTML is the persistence and output format
of these systems: the “debugging view,” so to speak.

This section describes the approach and high-level intuition that I
will take for each step, and Section 4 details specific methodologies
I will apply.

3.1 Language and Runtime Development
If we added a langauge to the web stack to enable mockup

driven development, what would it look like and what would its
features be?

I propose that the key capability necessary for mockup-driven
development—but missing from the web family of languages today—
is the ability to describe the relationship between content and struc-
ture on the web. CSS separates many aspects of HTML content
from its presentation, but the HTML page that remains is still a
complex combination of raw content and “presentational” HTML
scaffolding to display it. This presentational HTML obfuscates the
division between content and display. By making this division ex-
plicit, we can build tools that exploit knowledge of the true under-
lying content schema of the web page while integrating with the
custom presentation layer.

Rather than take an ontologist’s approach, coining a microdata
vocabulary as many have done in the past, I propose a relational

338



language which enables developers to describe how hierarchical
structures on the web (such as HTML or JSON) relate to each other.
Such a language provides the ability to talk about the relationship
between content and structure on the web without constraining the
use of the language to a particular domain. Users of such a lan-
guage could converge around common vocabularies by relating an
artifacts to a common “hub” structure, but they also retain the flex-
ibility to construct diverse custom mappings and grass-roots usage.

I propose that a small set of such declarative relational operators
can be used to provide sufficient information about a web page and
its content to enable mockup-driven development as defined above.
I have developed these operators into a declarative language called
Cascading Tree Sheets (CTS) and constructed a Javascript runtime
around it to test its capability.

Using CTS, for example, an author could remap the content of
their page into the style of another’s, simply by authoring a tree
sheet which relates equivalences and conditionalities between the
two pages. In a dynamic web setting, a tree sheet can be used
both to combine structured data with a template (in the form of a
mockup) and also to scrape data back out of that template. And
relations between trees can be joined, like database relations, to
hop from one web design to another, while preserving the content.

3.2 Usability Studies

Does mockup driven development offer improved authoring
experience to novices, skilled developers, and professional web

library maintainers?

The second step of the proposed approach seeks to understand
the authoring usability of mockup-driven web development—and
CTS as an implementation of it–from the standpoint of writing
HTML. This the prior stage can structurally show that CTS and
MDD provide simplifications to HTML content documents, this
stage will test whether that simplification also results in a net us-
ability gain for authors.

The CTS approach to mockup-driven development will present a
tradeoff between learnability and efficiency. On the one hand, CTS
should simplify many authoring tasks because it enables a clean
separation of concerns within HTML documents: this isolates the
task of authoring design from that of authoring content, and it en-
ables even static web authors to take advantage of “themes” that are
write-once, apply-everywhere. On the other hand, this approach
not only requires that users incur the cost of learning a new lan-
guage, it also requires them to think abstractly about the structural
layout of their web pages. While experts are likely used to think-
ing on this level, casual HTML authors may be unfamiliar with this
way of thinking about web authoring.

To test learnability for a web technology, it is important to con-
sider how web authors learn. Web authoring involves heavy reuse.
People find CSS that they like, copy it, and then learn how to make
small modifications to customize it. Thus, one can expect that the
learning curve for a new language like CTS would follow a simi-
lar path: a user’s first encounter with CTS would be to link to and
reuse some CTS sheet, an intermediate author would further mod-
ify it, and a skilled author would write CTS sheets from scratch.

I propose to take a usability testing approach that seeks to un-
derstand these three tiers of usage: resuse by copying, reuse with
modification, and original creation. Each of these will be exam-
ined via a user study described in Section 4. I will supplement
these user studies with qualitative interviews of web authors who
maintain and write their own HTML.

3.3 Automation and Performance

Can an annotated mockup be used to synthesize the application
functionality typically found in content management systems?

Web application authors today spend great effort implementing
relatively standard content management features and performance
optimizations to their applications. Content management features
include the ability add and edit lightly structured “items” of the type
managed by the web application: blog posts, pages, recipes, etc.
Because these systems are web applications, as opposed to static
content, CMSs also provide a range of performance optimizations
mitigate the costs of dynamic rendering. This stage of the project
will explore the range of CMS functionality and optimization that
can be derived from the mockup annotations that CTS provides.

Synthesizing a content management application from a declara-
tive mockup can be an arbitrarily complex topic. At heart of the
problem is a tradeoff between offering a broad set of capability and
requiring only a small amount of annotation. I propose to approach
the topic by breaking down the issue into smaller basic questions
that focus on the core task of providing authors with back-end per-
sistence of edits made in the web browser. Capabilities such as
complex queries and multi-user access control will be considered
application-centric features that are outside the scope of research.

The main content management questions that I will explore are:
Can we infer a reasonable data schema from a collection of page

mockups? XML literature suggests that CTS-annotated HTML doc-
uments should be relatively straightforward to transform into pos-
sible relational schemas. I believe this is a solved part of the prob-
lem that will be necessary for system implementation but not of
research value.

Is the view-update problem solved for generated schemas? When
updates are made to a relational projection of data, finding the set
of data-source modifications that are consistent with those updates
is typically problematic. This is known as the view-update problem
For the class of views and backing schemas possible to create with
CTS, is it possible to trace updates to the DOM inside the browser
back to the proper tuple—or design mockup—on the server?

How can site maps and page parameterization be expressed?
Web sites often consist of many pages, each parameterized by a
diverse set of signals, from URL parameters to cookies and HTTP
headers. With a mockup language like CTS, what level of an-
notation is necessary to enable transitioning from a single-page
paradigm to a multi-page one, and how should page parameteri-
zation be handled?

Can we exploit CTS annotations for better performance? It should
possiblei to use knowledge of the content structure provided by
CTS to aggressively cache data in the browser, offloading work
from the server, reducing the conversation between client and server
to simply a data “diff” exchange. This should increase throughput
on the server and provide offline access to pages on the client, all
without the content author having to provide custom caching code.

3.4 Migrating Existing Systems

To what extent can existing systems that rely on arbitrary code,
such as WordPress, be automatically converted to a

mockup-driven approach?

An important question for any new paradigm of development is
the cost of switching to the new method. Even if a new method
exhibits many benefits, if switching cost is high, the method is un-
likely to succeed unless it is truly revolutionary. Mockup driven

339



development has the potential to be revolutionary from the stand-
point of a community of users, as it transforms every web page into
a reusable mockup1, but from the standpoint of a single user, the
improvements it offers are evolutionary. How, then, to facilitate
switching?

I propose that it is possible to convert many existing CMS-powered
web sites to declarative, mockup-driven sites using a form of inter-
active wrapper induction. Ironically, the task of wrapper induction
is often applied so that the content can be extracted from a site. In
the case of CMS systems, such as WordPress, the content is already
available from the database, and the wrapper itself is the extraction
target. I will therefore call the task theme induction.

WordPress themes are computer programs. It is impossible in the
abstract to convert all possible themes to a simple, declarative for-
mat. But because of the particular domain of blogging, we can ex-
pect that WordPress themes are incredibly simple programs whose
behavior we can hope to deduce.

I propose a hybrid method that combines active learning with
tree transducer induction. By modeling a WordPress theme as a
black box whose input is a data structure and which outputs a web
page, we can programmatically generate a set of training examples
sufficient to induce–for some subset of themes space–a declarative
transformation which mimics the behavior of the theme program.
This transformation will then be converted into mockup form, with
CTS annotations describing bindings to the data.

This stage has three major goals. First, it will develop this theme
induction algorithm for the blogging domain and test it to under-
stand how often it succeeds within this domain. Second, it will
provide a path to automated conversion from existing procedural
CMS systems to a mockup-driven one, eliminating much of the
switching cost. And finally, it will generate a valuable asset to the
web community: a library of declarative themes which previously
were only available as WordPress plugins.

4. METHODOLOGY
Each stage of the project will be paired with an evaluation method-

ology suited toward its particular goals.
Language and Runtime Development. The methodology used

for this component will be to gather the set of capabilities neces-
sary to enable an MDD system, construct a domain-specific lan-
guage capable of achieving those capabilities, and then evaluating
whether this language achieves those functional goals. The require-
ments gathering phase will consist of constructing inventory of the
capabilities that existing template languages, theming languages,
and content management systems provide to authors.

Domain Specific Languages should be evaluated based on their
ability to achieve tasks important to their domain, as well as their
ease of use, concision, and uniqueness in capability (i.e., why not
just use an existing language?). To evaluate Cascading Tree Sheets’
ability to perform domain-relevant tasks, I will construct a gallery
of usage demonstrations that represent common scenarios in web
development, grouped by the expertise-level of the person who
might do them: beginners, who copy and modify web content from
others; intermediate authors, who write and share content; and pro-
fessionals, who create content explicitly for others to import and
reuse.

To evaluate concision, I will compare the demos constructed
with CTS to the alternatives that would have been necessary with-
out CTS. For beginners, emphasis will be placed on labor and skills
required versus the state of the art. For intermediate users, empha-

1A key differentiator from the approach offered by FORWARD, for
example [?]

sis will be placed on labor required and ability to repurpose web
code. For expert scenarios, I will demonstrate how CTS provides a
layer of structural indirection that would have fixed several publi-
cized encapsulation bugs with web libraries in the past.

Usability Studies. I will evaluate the mockup-driven workflow
using both web-based user studies and a lines-of-code complexity
analysis to perform various web authoring tasks. Three user studies
will be performed, for the cases of reuse, reuse with modification,
and authoring:

• For reuse, I will measure the ease with which authors can
take an existing web structure and reuse it without structural
modification. For example, for a university course page,
a task might consist of locating, copying, and editing the
HTML which represented one course announcement. Meth-
ods studied will be a CTS-powered site which separates con-
tent from design, an ordinary site which commingles the two,
and a WYSIWYG system.

• For reuse with modification, I will measure how long it takes
a subject to modify a site’s design so that all items (such
as course announcements) exhibit a new structural style. I
will test the case where the style simply changes, but the
content remains the same, and also the case in which new
content fields are added. This latter case will require the sub-
ject to author new CTS rules, but using existing CTS rules
as a guide. Methods studied will be a CTS-powered site, a
traditional HTML site, and a dynamic site using an existing
“knockout-style” template language.

• For the authoring case, I will first provide subjects with a
short tutorial and exercises which teach them how to use
CTS to author a web page. I will then ask them to construct
a multi-page site which re-uses a shared structure between
pages. Methods tested will be HTML with CTS and HTML
without CTS.

As a final, qualitative component, I will interview web profes-
sionals to understand how they work and gather their feedback
about the mockup-driven workflow I am proposing. Academic
projects which seek to improve developer workflow in the vacuum
of a laboratory run a huge risk of missing real-world factors that
can drive development, so these interviews will provide both use-
ful retrospective information and design advice for improvements.

Automation and Performance Automation will be approached
from a relational algebra perspective. I will seek to prove a lower
bound of the class of content management application that CTS-
annotated mockups are capable of describing. This class of appli-
cations corresponds to the category of applications that today re-
quire procedural code to implement, but could be automatically be
synthesized with an annotated mockup.

Performance will be studied using experiments which test the
impact of heavy caching of both static and dynamic resources in
the client browser. Additional data annotations to provide a data
synchronization policy will enable dynamic data to be updated with
a diff instead of with full replacement in many circumstances.

Migrating Existing Systems The migration component will con-
sist of algorithm development and testing over a corpus of 1590
blog themes scraped from Wordpress.org. I will frame the
problem similar to one of tree transduction. Given an example
tree of structured data, representing the content of the blog, we can
deterministically enumerate through all variants of this tree which
represent plausible data configurations. For example, for each tree
node which represents an set (such as comments on a post), we can

340



create a variant with no children, a variant with one child, and a
variant with many children. By using the procedural theming en-
gine to render one output HTML page for each variant, we are left
with a set of example tree pairs—one JSON and one HTML.

Given these tree pairs, we seek to learn a declarative mapping
that relates the JSON to the HTML. Literature has shown that a de-
terministic, top-down tree transducer can be learned for this task in
polynomial time [16]. I plan to draw upon tree transduction litera-
ture to create an approach which outputs an exemplar mockup and
set of declarative, bi-directional CTS relations instead of a trans-
ducer. I will test the efficacy of this approach by examining whether
the CTS-annotated mockups produced by this process, combined
with data, produce the same HTML result as the original procedural
process. Themes that appear to have been recovered correctly will
additionally be published online in declarative format for reuse.

5. RESULTS
Language and Runtime Development. I have completed sev-

eral iterations of the Cascading Tree Sheets language, using real
world development tasks and interviews with web development
firms to guide each iteration. The current implementation of CTS
is available for download at treesheets.org. I have devel-
oped several proof of concepts to evaluate CTS expressiveness as
a language: basic templating tasks, converting HTML into rich
Javascript widgets (such as D3) using just CSS classes, web scrap-
ing, design retargeting, and theming. A paper to be presented at
WWW 2013 details the language and these examples [3].

Usability Studies. I have completed preliminary evaluations of
mockup-based static content authoring, and these results in CHI
2013’s student research competition track. This work tests the
“reuse” scenario previously described. When editing CTS-powered
web pages, participants could complete reuse tasks tasks signifi-
cantly faster than with ordinary HTML: 74% faster for copying,
73% faster for pasting, and 51% faster for editing. I plan to redo
this experiment with some changes, based on initial feedback from
reviewers, and supplement it with the other user studies planned.

Performance. I previously published a performance study of in-
browser dynamic data caching and processing in WWW 2010 [4].
This work shows that using declarative annotation, combined with
a client-side templating language and data store, up to a four-fold
throughput improvement can be achieved for queue-heavy work-
loads, such as blogs, and a doubling of throughput can be achieved
by simply offloading data rendering tasks to the browser. While
this work was not implemented with the CTS language, the find-
ings apply to CTS.

Migration. I have completed scraping the dataset to use for this
piece and have constructed an evaluation harness.

Remaining Work. Three chief units of work remain: complet-
ing the usability studies, proving the category of applications for
which content management operations can be inferred, and devel-
oping the theme induction algorithm.

6. CONCLUSIONS
The web is the modern digital commons, a vital platform that en-

ables everyone from authors to expressing themselves to engineers
deploying applications. But web development technologies today
are focused too much on process and not enough on the artifact
we’re trying to make. I intend to evaluate how we might construct
tools which enable authors to program the web by stating what they
want instead of how to get what they want.

This thesis proposes to push the edges of mockup driven web de-
velopment, develop a common model for mockup annotation, and

explore its feasibility for a variety of web tasks. The approach I
propose is balanced: part systems building, part usability studies,
and part database and applications research. These efforts will yield
valuable data—as well as software artifacts—about how we might
construct a next-generation web programming model that broadens
the base of those able to contribute to the web and provides web
experts with an even more powerful baseline.

7. REFERENCES
[1] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in

XHTML: Syntax and processing. W3C Recommendation, 2008.
[2] S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive Solution to

the XML-to-Relational Mapping Problem , Nov. 2004.
[3] E. Benson and D. R. Karger. Cascading Tree Sheets and

Recombinant HTML: Better Reusability and Encapsulation of Web
Content. In In submission to WWW ’13: Proceedings of the 22nd
international conference on World Wide Web. ACM, 2013.

[4] E. Benson, A. Marcus, D. Karger, and S. Madden. Sync kit: a
persistent client-side database caching toolkit for data intensive
websites. In WWW 2010.

[5] D. Brickley and L. Miller. FOAF Vocabulary Specification 0.98.
Namespace Document, 2010.

[6] K. S.-P. Chang and B. A. Myers. WebCrystal: understanding and
reusing examples in web authoring. In CHI 2012.

[7] M. J. Fitzgerald. CopyStyler : Web design by example. MIT Masters
Thesis, 2008.

[8] Y. Fu, K. W. Ong, Y. Papakonstantinou, and M. Petropoulos. The
SQL-based all-declarative FORWARD web application development
framework. 5th Biennial Conference on Innovative Data Systems
Research (CIDR ’11), 2011.

[9] P. Geneves, N. Layaida, and V. Quint. On the analysis of cascading
style sheets. In WWW ’12: Proceedings of the 21st international
conference on World Wide Web. ACM, Apr. 2012.

[10] M. Hepp. GoodRelations: An Ontology for Describing Products and
Services Offers on the Web. 2008.

[11] I. Hickson and D. Hyatt. HTML5. W3C Working Draft, 2011.
[12] R. Khare and T. Çelik. Microformats: A Pragmatic Path to the

Semantic Web.
[13] K. Kowalzcykowski, K. W. Ong, K. K. Zhao, A. Deutsch,

Y. Papakonstantinou, and M. Petropoulos. Do-It-Yourself
Database-Driven Web Applications , Jan. 2009.

[14] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-to-SQL
Query Translation Literature: The State of the Art and Open
Problems. Lecture Notes in Computer Science, 2003.

[15] R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer. Bricolage:
example-based retargeting for web design. In CHI 2011.

[16] A. Lemay, S. Maneth, and J. Niehren. A learning algorithm for
top-down xml transformations. PODS 2009.

[17] S. Oney and B. Myers. FireCrystal: Understanding interactive
behaviors in dynamic web pages. In VLHCC 2009.

[18] F. Yang, N. Gupta, N. Gerner, X. Qi, A. Demers, J. Gehrke, and
J. Shanmugasundaram. A unified platform for data driven web
applications with automatic client-server partitioning. In WWW ’07:
Proceedings of the 16th international conference on World Wide
Web, pages 341–350, New York, NY, USA, 2007. ACM.

[19] F. Yang, J. Shanmugasundaram, M. Riedewald, and J. Gehrke. Hilda:
A high-level language for data-drivenweb applications. In ICDE ’06:
Proceedings of the 22nd International Conference on Data
Engineering, page 32, Washington, DC, USA, 2006. IEEE Computer
Society.

341




