
G-Path: Flexible Path Pattern Query on Large Graphs
Yiyuan Bai1,2 Chaokun Wang2 Yuanchi Ning2 Hanzhao Wu2 Hao Wang1,2

1Department of Computer Science and Technology, Tsinghua University
2School of Software, Tsinghua University, Beijing 100084, China
eldereal@gmail.com, chaokun@mail.tsinghua.edu.cn,

{ningyc09, wuhz09, wanghao07}@mails.tsinghua.edu.cn

ABSTRACT
With the socialization trend of web sites and applications, the
techniques of effective management of graph-structured data have
become one of the most important modern web technologies. In
this paper, we present a system of path query on large graphs,
known as G-Path. Based on Hadoop distributed framework and
bulk synchronized parallel model, the system can process generic
queries without preprocessing or building indices. To demonstrate
the system, we developed a web-based application which allows
searching entities and relationships on a large social network, e.g.,
DBLP publication network or Twitter dataset. With the flexibility
of G-Path, the application is able to handle different kinds of
queries. For example, a user may want to search for a publication
graph of an author while another user may want to search for all
publications of the author’s co-authors. All these queries can be
done by an interactive user interface and the results will be shown
in a visual graph.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services - Web-based services; H.2.5 [Database Management]:
Languages - Query languages

Keywords
G-Path, regular path pattern, path pattern query, graph query
language, social network.

1. INTRODUCTION
With the socialization trend of web sites and applications, the
techniques of effective graph-structured data management have
become one of the most important modern web technologies.
Techniques of efficient and effective query processing on graph
datasets, especially on graphs with a huge amount of vertices and
edges (known as big graphs), keep becoming dramatically
important to many product-level solutions to crucial problems
(e.g. social network analysis), and gain increasing attention from
researchers [1], [2], [3].

Many emerging algorithms directly or indirectly depend on the
effective computation of paths of a specific kind between two
nodes, e.g. retrieving all paths of length up to L in the GraphGrep
algorithm for sub-graph query processing [4], counting label paths
in a given graph for classification of chemical compounds [5], and
finding out a path in social network analysis, whose edge colors
match the pattern specified by a regular expression [6]. This kind
of problems can be called path pattern query, a.k.a. path pattern
matching, and is one of the most basic operations of graph data
management and mining.

To be generalized to fit into different applications, the definition

of path patterns should be flexible to define patterns of different
lengths and constraints. A path pattern may involve constraints on
nodes as well as edges, along with some repetitive patterns of its
parts. Regular expression is suitable for the definition of the
pattern because it is simple and powerful. It can express various
repetitive and constrained patterns in a single-line plain text. The
path pattern defined in regular expressions is called regular path
patterns in this paper.

There are some query languages supporting path queries, but
those only support limited regular expressions (e.g. GraphQL [7],
SoQL [8]), or only support semantic web data and cannot directly
extend to support universal graph (e.g. GLEEN [9], SPARQL
[10]). Several graph data management systems (GDMS) emerged
these years, such as Neo4j1, Apache Giraph2 or Trinity. However,
they have the following problems. Neo4j is a GDMS with strong
consistency, but it performs badly on a large distributed
environment. Giraph is more likely to be a platform rather than a
GDMS because it does not have a high level query language.
Trinity is a private system for shortest path calculation, and does
not support generic queries.

In this paper, we bring forward the design and implementation of
G-Path, a regular path query language on graphs, which supports
mostly all useful regular expression operators (group operator,
parallel operator, Kleene operators, etc.) in a similar syntax. A G-
Path query can be compiled into a finite automaton. We make a
distributed algorithm to process G-Path queries based on bulk
synchronization parallel (BSP) model and propose several
optimization methods to improve the performance. Because bulk
synchronization parallel model [11] is a de facto standard in graph
data management, G-Path can be easily implemented on various
graph data management and processing platforms (e.g. Google
Pregel [12], Apache Giraph) or other message-passing based
frameworks (e.g. GraphLab [13]). Section 2 contains a brief
introduction of the principle and implementation of G-Path. We
believe G-Path will be useful for applications on social networks.

Also, we propose an interesting application for social web sites,
which is built on G-Path. Our implementation of G-Path builds on
Hadoop HDFS and Hama. The system takes user’s search terms
and then displays the query result in an interactive user interface.
The dataset contains various kinds of vertices and edges to show
the flexibility of G-Path queries. Section 3 introduces the
demonstration system with some screenshots.

The following contributions are made in this paper:

a) We introduce a generic path pattern query language, called
G-Path. A G-Path query can be compiled into a finite
automaton and takes several optimization methods.

1 http://www.neo4j.org/
2 http://giraph.apache.org/

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author's site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

333

b) A BSP-based parallel algorithm is introduced to process G-
Path queries, which can easily integrate into existing graph-
processing frameworks.

c) We have developed a demo application which performs a
search on people and publications on a DBLP dataset. Users
can use an interactive interface to create queries. The result is
shown in a visual graph.

2. THE QUERY SYSTEM
The G-Path query system is responsible for searching for a given
regular path pattern (introduced in Section 1) on a graph dataset.
First, we will introduce the syntax of G-Path query language in
Section 2.1.

G-Path query system consists of 3 parts: (1) Query compiler,
which converts a literal query into an execution plan and
optimizes the execution plan. In our system, an execution plan is
represented by a finite automaton, called QFA. Section 2.2
introduces the definition of the QFA. (2) Query processor, which
executes the finite automaton under bulk synchronization parallel
model. Section 2.3 introduces the execution of a QFA and Section
2.4 gives some optimization strategies in brief. (3) Graph data
manager, which reads and writes graph datasets on a HDFS
cluster. This part is a lower level service of our system, so in this
paper we do not describe this part in detail.

2.1 G-Path Query Language
G-Path query language is used to define a regular path pattern. It
has a simple syntax but is general enough to describe different
kinds of patterns.

The language has only 2 basic characters: “.” (dot) and “-”
(minus). A dot represents a vertex in the path while a minus
represents a directed edge. For example, “.-.” is a path with two
vertices with an out-edge of the first vertex pointing to the second
one.

G-Path language supports many regular expression operators.
Such as: (1) alternation sign “|” which matches either its left part
or right part; (2) quantifiers “*”, “+” and “?” which means “zero
or more times”, “one or more times”, “zero or once”, respectively;
(3) group “()” which packs a sub-query to a single matching unit.

Because G-Path is a query language on attributed graphs, we
define a syntax for searching attributes, which is “[attr OP
value]” filter. OP can be binary relational operators such as “=”,
“!=”, “>”, “>=”, “<” or “<=”. “>>” is another special operator
which is only applied on string literals and matches only when the
attribute’s value contains the test string literal. Multiple attribute
filters represent a conjunction of different constraints. For
example, “.[year=2012] [name>>World]” matches a node with
its “year” attribute equaling to 2012 and “name” attribute
containing the word “World”.

A legal path is a sequence in which vertices and edges alternate
and the first as well as the last one in the sequence should be

vertices. However, some queries violate this constraint, e.g., “..”
has a concatenation of two vertices. Looking at this query, it is
easy to infer that user wants to query for “.-.”. G-Path language
supports to omit some unrestricted nodes or edges, but omitting
two concatenating entities is not allowed. We can infer omitted
parts from the integrity constraint. For example, a query should
begin with a vertex. So given a query “-”, we must add a leading
and a tailing “.” to form a legal query “.-.”, otherwise the integrity
constraint is violated.

2.2 Query Finite Automaton
A valid query will be compiled to a query finite automaton (called
QFA). Similar to a normal definite finite automation (DFA), a
QFA consists of several states and transitions between states.
However, the QFA is different from DFA.

Each state of QFA responses to a vertex in the path. Each
transition between states increases the length of the path by 1. An
obvious difference between QFA and DFA is that a QFA’s state
contains predicates on the vertex along with predicates on the
vertex’ edges. As a result, the QFA fits graph data better than
normal DFA does, and can be easily executed by a BSP-based
parallel executor.

A QFA can be represented with a table. Table 1 shows an
example of query “.[id=1]-.” which finds all sibling vertices of a
given vertex. From the table we can see that the “transition” part
of QFA is more complex than a DFA’s. There are 3 types of
transitions. “In” and “Out” correspond to a vertex’s incoming
edges and outgoing edges. “Accept” is a special type, which
means that the automaton has already matched a desired path.

2.3 BSP-based Query Processing
A big advantage of our implementation of G-Path is that the query
can be executed in parallel. We use a BSP-based query engine.
Each BSP message (State, Path) can be treated as an instance of
the QFA in which State is the current state number and Path is the
matched path fragment. The QFA table is the same for all
messages, so it does not need to store the table in messages.

For each received message in a super-step, the message can be
treated as a QFA. Then we can calculate the next state along each
edge for the current vertex. If the next state is valid, a message
with the new state and path will be sent along the edge. Multiple
messages are sent if more than one edge has a valid transition,
which “forks” the execution of the QFA. This is the primary cause
of the parallel execution. Figure 1 is an example of executing the
QFA shown in Table 1. In the first super-step, vertex 1 sends a
message of state 2 to its neighbors. In the second super-step,
vertices 2, 3 and 4 each receives a message from vertex 1.
Because state 2’s transitions contain an Accept, a valid path will

Condition

Transition State
Predicate

Type Predicate To-State

1 id=1 Out * 2

2 * Accept N/A N/A

Table 1: An example of QFA table

Figure 1: An example of execution steps

Super-step 1 Super-step 2

id = 1,
Send the message
{ State: 2,
 Path: [1]}

Output the
path when
accepted

3

1

2 4 3

1

2 4

1, 2

1, 3

1, 4

334

be the output for each of them. The final result set is [1, 2], [1, 3]
and [1, 4].

2.4 Optimization
Optimization is an important part of a practical data management
system. We have developed several optimization mechanisms to
process G-Path queries faster. These optimizations come from two
aspects: QFA optimization and runtime optimization. In the
following paragraphs we will introduce the most significant
optimization of the two aspects.

Because the QFA supports different types of transitions, we can
build several equivalent QFAs. For example, for query “.-.[id=1]”,
we can start in all vertices and find their outgoing vertices in
which its ID is 1. An alternative way is to first find the vertex
whose ID equals to 1, and then find all of its incoming vertices.
The second way makes fewer messages than the first way. QFA
optimization aims to find an optimal automaton in all equivalent
variants.

We notice that for the same state and vertex, the following
execution steps are almost identical except for matched paths. If
we combine all messages of the same state, we can reduce a large
amount of messages. Based on this observation, we develop tree
compact optimization which compacts all messages in the same
state and combines their matched paths into a tree. So a tree
compact message can contain many original messages, reducing a
large amount of messages.

3. THE DEMOSTRATION
Our demo is a web application built on the G-Path query system
in which the DBLP dataset is used. In other papers, the DBLP
dataset is often treated as a co-authorship network, which ignores
most information about publications in the dataset. However, we
preserve the information about articles and journals in DBLP to
handle flexible queries.

Each vertex in the dataset contains an attribute “type”, which
indicates the type of the vertex. There are 3 types of vertices:
Person, Article and Journal. All edges are undirected (thus can be
retrieved in both directions) with different types and attributes. A
Publish edge lies between Person and Article while a Contains
edge lies between Journal and Article. If two people have a
common article, a Co-author edge will connect them. Although
Co-author edges can be inferred from Publish edges and Article
vertices, we still preserve them for convenience. Figure 2 is the
graphical data schema of the dataset. It shows different types of
vertices and different types of edges between vertices. G-Path
supports directed edges only, so each undirected edge is
represented by two directed edges with same attributes.

The dataset contains 1,617,172 vertices and 6,323,177 edges.
There are 713,124 different people, 902,746 articles and 1302
journals. The number of “co-author”, “contains” and “publish”
relationships are 3,095,497, 902,523 and 2,325,157, respectively.

With different types of vertices and edges, we can construct
complex queries on different types and attributes. Section 3.1

gives an introduction to the demonstration application. Also,
Section 3.2 gives some examples and explanations of the queries.

3.1 User Interface
In the middle of the screen there are a textbox to put in queries
and a big node (called the center node). Different center node can
be chosen from the pull-down menu on the right. Direct G-Path
queries are acceptable but not friendly to end users. As that being
the reason, the application also supports simple searching terms as
other searching engine does. The terms will be converted to
queries on people, articles or journals.

The system requires all queries to start with a single vertex for a
better display scheme (it is not a restriction of G-Path but only a
restriction of the demo application). The result of the query is
shown as a network graph. HTML5 techniques are used to
develop a fancy interface.

3.2 Queries
In this section, we will give several types of queries that our
system handles.

Finding a single entity can be done by inputting a name in the
search box. It will be converted to a G-Path query like
“.[name>>KEYWORD]” and KEYWORD represents the
keyword of the query. By default, the system will search entities
containing the keyword from all of the people, articles and
journals. Specially, the KEYWORD with a leading @ indicates
that the query is to find a person, the bracketed KEYWORD (i.e.,
<KEYWORD>) indicates to find a journal, and the quoted
KEYWORD (i.e., “KEYWORD”) indicates to find an article. The
result will be shown in the center node as in Figure 3. Note that
the dashed lines are for the sake of presenting the neighbor nodes,

Figure 2: Data schema of demostration's dataset

Person Article publish
co-author

Journalcontains

Figure 3: Finding a single person

Figure 4: Co-author cluster

335

which in fact are not included in the result (the result only
contains a single person).

Finding co-author clusters aims at finding all co-authored
people and their relationships of a given person. The G-Path query
should be “.[name>>KEYWORD].[type=Person]”. In this
query, the first dot matches the given person and the second dot
matched his co-author.

Figure 4 shows a result of this kind of query. You can see 3
cliques of the given person. Their dimensions are 3, 4 and 4. The
right side of this figure is the detailed information of a selected
person (connected with a dashed line).

Finding similar journals is another kind of query. It shows the
flexibility of the system where users can not only find
relationships between people, but also search according to
relationships between journals. If a person published several
articles in different journals, the journals may share a common
interest of that person. It is reasonable to say that the journals are
likely of similar interest.

Figure 5 shows the result of similar journal queries. Two different
journals are “IBM Research Report” and “IBM Research Report,
San Rose, California”. Actually, they are referring to the same
journal. However, because our DBLP dataset distinguishes
journals only by their full names, the two journals are regarded as
different journals. In the query’s view, those two journals share
the same interest and should be very similar.

Finding similar people shows that the system handles different
kinds of relationships between people. A co-author relationship is
a strong one, but sometimes we want to deal with weaker
relationships. For example, if two people have published articles
in a same journal, they may have a weak relationship (i.e., share a
common interest). Figure 6 shows a result graph of this kind of
queries, in which circles represent persons, small rectangles
represent articles and big rounded rectangles represent journals.

4. CONCLUSION
In this paper we present G-Path, a flexible path query language
along with a processing algorithm based on BSP parallel model.
G-Path query language’s syntax is simple but powerful. The
algorithm is designed to be parallel so that it handles large graph
data and can execute efficiently in a distributed computing cluster.
Based on BSP parallel model, which is used by most common
graph processing frameworks, G-Path can also be integrated into
existing graph data management systems easily and improve the
existing solutions.

A prototype of G-Path is developed, on which a web application is
built with the DBLP dataset. Different from most other DBLP-

based applications which use DBLP as a single co-authorship
network, our system stores more detailed topology structure and
attribute data of DBLP, which supports more flexible and
complex queries.

5. ACKNOWLEDGEMENTS
This work was supported by the National Natural Science
Foundation of China (No. 61170064) and the National High
Technology Research and Development Program of China (No.
2013AA013204).

6. REFERENCES
[1] W. Fan, J. Li, S. Ma, N. Tang and Y. Wu, "Adding Regular

Expressions to Graph Reachability and Pattern Queries," Frontiers of
Computer Science, vol. 6(3), pp. 313-338, 2012.

[2] L. Chen, A. Gupta and M. E. Kurul, "Stack-based Algorithms for
Pattern Matching on DAGs," VLDB, pp. 493-504, 2005.

[3] R. Jin, Y.Xiang, N. Ruan and H. Wang, "Efficiently Answering
Reachability Queries on Very Large Directed Graphs," SIGMOD, pp.
595-608, 2008.

[4] R. Giugno and D. Shasha, "Graphgrep: A Fast and Universal Method
for Querying Graphs," ICPR, vol. 2, pp. 112-115, 2012.

[5] H. Kashima, K. Tsuda and A. Inokuchi, "Marginalized Kernels
between Labeled Graphs," ICML, vol. 20(1), p. 321, 2003.

[6] W. Fan, "Graph Pattern Matching Revised for Social Network
Analysis," ICDT, pp. 8-12, 2012.

[7] H. He and A. K. Singh, "GraphQL: Query Language and Access
Methods for Graph Databases," Technical Report, University of
California, Santa Barbara, 2007.

[8] R. Ronen and O. Shmueli, "SoQL: A Language for Querying and
Creating Data in Social Networks," ICDE, p. 1595–1602, 2009.

[9] L. T. Detwiler, D. Suciu and J. F. Brinkley, "Regular Paths in
SPARQL: Querying the NCI Thesaurus," AMIA Annual Symposium
Proceedings, p. 161, 2008.

[10] E. Prud’hommeaux and A. Seaborne, "SPARQL Query Language for
RDF," W3C Recommendation, vol. 15, 2008.

[11] L. G. Valiant, "A bridging model for parallel computation,"
Communications of the ACM, vol. 33(8), p. 103–111, 1990.

[12] G. Malewicz and M. H. Austern, "Pregel: a system for large-scale
graph processing," Proceedings of SIGMOD, pp. 135-146, 2010.

[13] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola and J. M.
Hellerstein, "Distributed GraphLab: a framework for machine learning
and data mining in the cloud," Proceedings of the VLDB, vol. 5(8), pp.
716-727, 2012.

Figure 5: Finding similar people

Figure 6: Finding similar journals

336

