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ABSTRACT 
With the socialization trend of web sites and applications, the 
techniques of effective management of graph-structured data have 
become one of the most important modern web technologies. In 
this paper, we present a system of path query on large graphs, 
known as G-Path. Based on Hadoop distributed framework and 
bulk synchronized parallel model, the system can process generic 
queries without preprocessing or building indices. To demonstrate 
the system, we developed a web-based application which allows 
searching entities and relationships on a large social network, e.g., 
DBLP publication network or Twitter dataset. With the flexibility 
of G-Path, the application is able to handle different kinds of 
queries. For example, a user may want to search for a publication 
graph of an author while another user may want to search for all 
publications of the author’s co-authors. All these queries can be 
done by an interactive user interface and the results will be shown 
in a visual graph. 

Categories and Subject Descriptors 
H.3.5 [Information Storage and Retrieval]: Online Information 
Services - Web-based services; H.2.5 [Database Management]: 
Languages - Query languages 

Keywords 
G-Path, regular path pattern, path pattern query, graph query 
language, social network. 

1. INTRODUCTION 
With the socialization trend of web sites and applications, the 
techniques of effective graph-structured data management have 
become one of the most important modern web technologies. 
Techniques of efficient and effective query processing on graph 
datasets, especially on graphs with a huge amount of vertices and 
edges (known as big graphs), keep becoming dramatically 
important to many product-level solutions to crucial problems 
(e.g. social network analysis), and gain increasing attention from 
researchers [1], [2], [3]. 

Many emerging algorithms directly or indirectly depend on the 
effective computation of paths of a specific kind between two 
nodes, e.g. retrieving all paths of length up to L in the GraphGrep 
algorithm for sub-graph query processing [4], counting label paths 
in a given graph for classification of chemical compounds [5], and 
finding out a path in social network analysis, whose edge colors 
match the pattern specified by a regular expression [6]. This kind 
of problems can be called path pattern query, a.k.a. path pattern 
matching, and is one of the most basic operations of graph data 
management and mining. 

To be generalized to fit into different applications, the definition 

of path patterns should be flexible to define patterns of different 
lengths and constraints. A path pattern may involve constraints on 
nodes as well as edges, along with some repetitive patterns of its 
parts. Regular expression is suitable for the definition of the 
pattern because it is simple and powerful. It can express various 
repetitive and constrained patterns in a single-line plain text. The 
path pattern defined in regular expressions is called regular path 
patterns in this paper. 

There are some query languages supporting path queries, but 
those only support limited regular expressions (e.g. GraphQL [7], 
SoQL [8]), or only support semantic web data and cannot directly 
extend to support universal graph (e.g. GLEEN [9], SPARQL 
[10]). Several graph data management systems (GDMS) emerged 
these years, such as Neo4j1, Apache Giraph2 or Trinity. However, 
they have the following problems. Neo4j is a GDMS with strong 
consistency, but it performs badly on a large distributed 
environment. Giraph is more likely to be a platform rather than a 
GDMS because it does not have a high level query language. 
Trinity is a private system for shortest path calculation, and does 
not support generic queries. 

In this paper, we bring forward the design and implementation of 
G-Path, a regular path query language on graphs, which supports 
mostly all useful regular expression operators (group operator, 
parallel operator, Kleene operators, etc.) in a similar syntax. A G-
Path query can be compiled into a finite automaton. We make a 
distributed algorithm to process G-Path queries based on bulk 
synchronization parallel (BSP) model and propose several 
optimization methods to improve the performance. Because bulk 
synchronization parallel model [11] is a de facto standard in graph 
data management, G-Path can be easily implemented on various 
graph data management and processing platforms (e.g. Google 
Pregel [12], Apache Giraph) or other message-passing based 
frameworks (e.g. GraphLab [13]). Section 2 contains a brief 
introduction of the principle and implementation of G-Path. We 
believe G-Path will be useful for applications on social networks. 

Also, we propose an interesting application for social web sites, 
which is built on G-Path. Our implementation of G-Path builds on 
Hadoop HDFS and Hama. The system takes user’s search terms 
and then displays the query result in an interactive user interface. 
The dataset contains various kinds of vertices and edges to show 
the flexibility of G-Path queries. Section 3 introduces the 
demonstration system with some screenshots. 

The following contributions are made in this paper: 

a) We introduce a generic path pattern query language, called 
G-Path. A G-Path query can be compiled into a finite 
automaton and takes several optimization methods. 

                                                                 
1 http://www.neo4j.org/ 
2 http://giraph.apache.org/ 
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b) A BSP-based parallel algorithm is introduced to process G-
Path queries, which can easily integrate into existing graph-
processing frameworks. 

c) We have developed a demo application which performs a 
search on people and publications on a DBLP dataset. Users 
can use an interactive interface to create queries. The result is 
shown in a visual graph. 

2. THE QUERY SYSTEM 
The G-Path query system is responsible for searching for a given 
regular path pattern (introduced in Section 1) on a graph dataset. 
First, we will introduce the syntax of G-Path query language in 
Section 2.1. 

G-Path query system consists of 3 parts: (1) Query compiler, 
which converts a literal query into an execution plan and 
optimizes the execution plan. In our system, an execution plan is 
represented by a finite automaton, called QFA. Section 2.2 
introduces the definition of the QFA. (2) Query processor, which 
executes the finite automaton under bulk synchronization parallel 
model. Section 2.3 introduces the execution of a QFA and Section 
2.4 gives some optimization strategies in brief. (3) Graph data 
manager, which reads and writes graph datasets on a HDFS 
cluster. This part is a lower level service of our system, so in this 
paper we do not describe this part in detail. 

2.1 G-Path Query Language 
G-Path query language is used to define a regular path pattern. It 
has a simple syntax but is general enough to describe different 
kinds of patterns. 

The language has only 2 basic characters: “.” (dot) and “-” 
(minus). A dot represents a vertex in the path while a minus 
represents a directed edge. For example, “.-.” is a path with two 
vertices with an out-edge of the first vertex pointing to the second 
one. 

G-Path language supports many regular expression operators. 
Such as: (1) alternation sign “|” which matches either its left part 
or right part; (2) quantifiers “*”, “+” and “?” which means “zero 
or more times”, “one or more times”, “zero or once”, respectively; 
(3) group “()” which packs a sub-query to a single matching unit. 

Because G-Path is a query language on attributed graphs, we 
define a syntax for searching attributes, which is “[attr OP 
value]” filter. OP can be binary relational operators such as “=”, 
“!=”, “>”, “>=”, “<” or “<=”. “>>” is another special operator 
which is only applied on string literals and matches only when the 
attribute’s value contains the test string literal. Multiple attribute 
filters represent a conjunction of different constraints. For 
example, “.[year=2012] [name>>World]” matches a node with 
its “year” attribute equaling to 2012 and “name” attribute 
containing the word “World”. 

A legal path is a sequence in which vertices and edges alternate 
and the first as well as the last one in the sequence should be 

vertices. However, some queries violate this constraint, e.g., “..” 
has a concatenation of two vertices. Looking at this query, it is 
easy to infer that user wants to query for “.-.”. G-Path language 
supports to omit some unrestricted nodes or edges, but omitting 
two concatenating entities is not allowed. We can infer omitted 
parts from the integrity constraint. For example, a query should 
begin with a vertex. So given a query “-”, we must add a leading 
and a tailing “.” to form a legal query “.-.”, otherwise the integrity 
constraint is violated.  

2.2 Query Finite Automaton 
A valid query will be compiled to a query finite automaton (called 
QFA). Similar to a normal definite finite automation (DFA), a 
QFA consists of several states and transitions between states. 
However, the QFA is different from DFA.  

Each state of QFA responses to a vertex in the path. Each 
transition between states increases the length of the path by 1. An 
obvious difference between QFA and DFA is that a QFA’s state 
contains predicates on the vertex along with predicates on the 
vertex’ edges. As a result, the QFA fits graph data better than 
normal DFA does, and can be easily executed by a BSP-based 
parallel executor. 

A QFA can be represented with a table. Table 1 shows an 
example of query “.[id=1]-.” which finds all sibling vertices of a 
given vertex. From the table we can see that the “transition” part 
of QFA is more complex than a DFA’s. There are 3 types of 
transitions. “In” and “Out” correspond to a vertex’s incoming 
edges and outgoing edges. “Accept” is a special type, which 
means that the automaton has already matched a desired path.  

2.3 BSP-based Query Processing 
A big advantage of our implementation of G-Path is that the query 
can be executed in parallel. We use a BSP-based query engine. 
Each BSP message (State, Path) can be treated as an instance of 
the QFA in which State is the current state number and Path is the 
matched path fragment. The QFA table is the same for all 
messages, so it does not need to store the table in messages. 

For each received message in a super-step, the message can be 
treated as a QFA. Then we can calculate the next state along each 
edge for the current vertex. If the next state is valid, a message 
with the new state and path will be sent along the edge. Multiple 
messages are sent if more than one edge has a valid transition, 
which “forks” the execution of the QFA. This is the primary cause 
of the parallel execution. Figure 1 is an example of executing the 
QFA shown in Table 1. In the first super-step, vertex 1 sends a 
message of state 2 to its neighbors. In the second super-step, 
vertices 2, 3 and 4 each receives a message from vertex 1. 
Because state 2’s transitions contain an Accept, a valid path will 

Condition 

Transition State 
Predicate 

Type Predicate To-State 

1 id=1 Out * 2 

2 * Accept N/A N/A 

Table 1: An example of QFA table 

Figure 1: An example of execution steps 

Super-step 1 Super-step 2 

id = 1,  
Send the message 
{ State: 2, 
 Path: [1]} 

Output the 
path when 
accepted 

3

1

2 4 3 

1 

2 4 

1, 2

1, 3

1, 4
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be the output for each of them. The final result set is [1, 2], [1, 3] 
and [1, 4]. 

2.4 Optimization 
Optimization is an important part of a practical data management 
system. We have developed several optimization mechanisms to 
process G-Path queries faster. These optimizations come from two 
aspects: QFA optimization and runtime optimization. In the 
following paragraphs we will introduce the most significant 
optimization of the two aspects.  

Because the QFA supports different types of transitions, we can 
build several equivalent QFAs. For example, for query “.-.[id=1]”, 
we can start in all vertices and find their outgoing vertices in 
which its ID is 1. An alternative way is to first find the vertex 
whose ID equals to 1, and then find all of its incoming vertices. 
The second way makes fewer messages than the first way. QFA 
optimization aims to find an optimal automaton in all equivalent 
variants. 

We notice that for the same state and vertex, the following 
execution steps are almost identical except for matched paths. If 
we combine all messages of the same state, we can reduce a large 
amount of messages. Based on this observation, we develop tree 
compact optimization which compacts all messages in the same 
state and combines their matched paths into a tree. So a tree 
compact message can contain many original messages, reducing a 
large amount of messages. 

3. THE DEMOSTRATION 
Our demo is a web application built on the G-Path query system 
in which the DBLP dataset is used. In other papers, the DBLP 
dataset is often treated as a co-authorship network, which ignores 
most information about publications in the dataset. However, we 
preserve the information about articles and journals in DBLP to 
handle flexible queries. 

Each vertex in the dataset contains an attribute “type”, which 
indicates the type of the vertex. There are 3 types of vertices: 
Person, Article and Journal. All edges are undirected (thus can be 
retrieved in both directions) with different types and attributes. A 
Publish edge lies between Person and Article while a Contains 
edge lies between Journal and Article. If two people have a 
common article, a Co-author edge will connect them. Although 
Co-author edges can be inferred from Publish edges and Article 
vertices, we still preserve them for convenience. Figure 2 is the 
graphical data schema of the dataset. It shows different types of 
vertices and different types of edges between vertices. G-Path 
supports directed edges only, so each undirected edge is 
represented by two directed edges with same attributes. 

The dataset contains 1,617,172 vertices and 6,323,177 edges. 
There are 713,124 different people, 902,746 articles and 1302 
journals. The number of “co-author”, “contains” and “publish” 
relationships are 3,095,497, 902,523 and 2,325,157, respectively. 

With different types of vertices and edges, we can construct 
complex queries on different types and attributes. Section 3.1 

gives an introduction to the demonstration application. Also, 
Section 3.2 gives some examples and explanations of the queries. 

3.1 User Interface 
In the middle of the screen there are a textbox to put in queries 
and a big node (called the center node). Different center node can 
be chosen from the pull-down menu on the right. Direct G-Path 
queries are acceptable but not friendly to end users. As that being 
the reason, the application also supports simple searching terms as 
other searching engine does. The terms will be converted to 
queries on people, articles or journals. 

The system requires all queries to start with a single vertex for a 
better display scheme (it is not a restriction of G-Path but only a 
restriction of the demo application). The result of the query is 
shown as a network graph. HTML5 techniques are used to 
develop a fancy interface. 

3.2 Queries 
In this section, we will give several types of queries that our 
system handles.  

Finding a single entity can be done by inputting a name in the 
search box. It will be converted to a G-Path query like 
“.[name>>KEYWORD]” and KEYWORD  represents the 
keyword of the query. By default, the system  will search entities 
containing the keyword from all of the people, articles and 
journals. Specially, the KEYWORD with a leading @ indicates 
that the query is to find a person, the bracketed KEYWORD (i.e., 
<KEYWORD>) indicates to find a journal, and the quoted 
KEYWORD (i.e., “KEYWORD”) indicates to find an article. The 
result will be shown in the center node as in Figure 3. Note that 
the dashed lines are for the sake of presenting the neighbor nodes, 

Figure 2: Data schema of demostration's dataset 

Person Article publish 
co-author 

Journalcontains 

Figure 3: Finding a single person 

Figure 4: Co-author cluster 
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which in fact are not included in the result ( the result only 
contains a single person). 

Finding co-author clusters aims at finding all co-authored 
people and their relationships of a given person. The G-Path query 
should be “.[name>>KEYWORD].[type=Person]”. In this 
query, the first dot matches the given person and the second dot 
matched his co-author. 

Figure 4 shows a result of this kind of query. You can see 3 
cliques of the given person. Their dimensions are 3, 4 and 4. The 
right side of this figure is the detailed information of a selected 
person (connected with a dashed line).  

Finding similar journals is another kind of query. It shows the 
flexibility of the system where users can not only find 
relationships between people, but also search according to 
relationships between journals. If a person published several 
articles in different journals, the journals may share a common 
interest of that person. It is reasonable to say that the journals are 
likely of similar interest.  

Figure 5 shows the result of similar journal queries. Two different 
journals are “IBM Research Report” and “IBM Research Report, 
San Rose, California”. Actually, they are referring to the same 
journal. However, because our DBLP dataset distinguishes 
journals only by their full names, the two journals are regarded as 
different journals. In the query’s view, those two journals share 
the same interest and should be very similar.  

Finding similar people shows that the system handles different 
kinds of relationships between people. A co-author relationship is 
a strong one, but sometimes we want to deal with weaker 
relationships. For example, if two people have published articles 
in a same journal, they may have a weak relationship (i.e., share a 
common interest). Figure 6 shows a result graph of this kind of 
queries, in which circles represent persons, small rectangles 
represent articles and big rounded rectangles represent journals. 

4. CONCLUSION 
In this paper we present G-Path, a flexible path query language 
along with a processing algorithm based on BSP parallel model. 
G-Path query language’s syntax is simple but powerful. The 
algorithm is designed to be parallel so that it handles large graph 
data and can execute efficiently in a distributed computing cluster. 
Based on BSP parallel model, which is used by most common 
graph processing frameworks, G-Path can also be integrated into 
existing graph data management systems easily and improve the 
existing solutions. 

A prototype of G-Path is developed, on which a web application is 
built with the DBLP dataset. Different from most other DBLP-

based applications which use DBLP as a single co-authorship 
network, our system stores more detailed topology structure and 
attribute data of DBLP, which supports more flexible and 
complex queries. 
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