
Radialize: A Tool for Social Listening Experience on the
Web Based on Radio Station Programs

Álvaro R. Pereira Jr. Diego Dutra Milton Stiilpen Jr. Alex Amorim Dutra
Felipe Martins Melo Paulo H. C. Mendonça Ângelo Magno de Jesus

Kledilson Ferreira
Idealize Lab, Department of Computer Science

Federal University of Ouro Preto, Minas Gerais, Brazil
{alvaro, ddutra, mstiilpenj, alexamorim, felipe.melo, paulohcm, angelo, kledilson}@iceb.ufop.br

ABSTRACT
Radialize represents a service for listening to music and radio
programs through the Web. The service allows the discovery
of the content being played by radio stations on the Web,
either by managing explicit information made available by
those stations or by means of our technology for automatic
recognition of audio content in a stream. Radialize then of-
fers a service in which the user can search, be recommended,
and provide feedback on artists and songs being played in
traditional radio stations, either explicitly or implicitly, in
order to compose an individual profile. The recommender
system utilizes every user interaction as a data source, as
well as the similarity abstraction extracted out of the ra-
dios’ musical programs, making use of the wisdom of crowds
implicitly present in the radio programs.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Radio; music; search; recommendation; signal processing;
crawling; software architecture

1. INTRODUCTION
Radio is the traditional tool for social listening experi-

ence which has historically played a very important role in
the society as a mass media. The first radio program was
broadcast in 1920 in Detroit, Michigan, USA1. Radio sta-
tions soon became the main way to disseminate information
at that age. Nowadays there are tens of thousands of ra-
dio stations around the world, being maintained mainly by
advertising, playing an important role not only on people’s
lives but also on the economy.

Broadcasting services such as radio and television repre-
sent a limited class of social interaction called mass media
on which a few individuals communicate unidirectionally to

1http://en.wikipedia.org/wiki/Radio_stations

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

the mass. Receptor individuals are generally passive play-
ers, making it hard for a radio or TV station to analyze the
profile of its audience. Another historical limitation of ra-
dio and television is the geographical barrier. Given that
the transmission system is not able to propagate the signal
throughout neighbor transmission points (antennas), recep-
tors are limited to listen or watch stations that broadcast
within their geographical range location. Nevertheless, al-
though living in the same location, people have different
preferences, so that they might like different artists, songs,
talk shows, news, and advertising contents.

In this paper we present Radialize, a tool with the general
purpose of allowing radio stations to, both, interact closely
to their listeners, and to transmit to listeners independently
of their locations. Thus, Radialize aims to be the ”Google of
the radios“, as it is able to discover and index the content be-
ing played by radio stations transmitting through the Web,
either by managing explicit information made available by
radio stations or by means of our technology for automatic
recognition of audio content.

Under the perspective of listeners, Radialize comes to re-
define the way people listen to radio. It represents a dis-
ruptive technology which will deliver the second generation
of radio listening experience. With Radialize users can rate
or provide feedback on artists and songs being played in
traditional radio stations, either explicitly or implicitly, in
order to compose an individual profile. The service offers
new items that might be of the user’s interest, where the
items may be radio stations, artists, songs, or other users
with similar tastes. To deliver the best experience for users,
Radialize makes use of the wisdom of the crowds by taking
into account for its search and recommendation services the
programs of the radio stations, which are actually the result
of specialist disc-jockeys’ action when creating playlists.

With Radialize being the tool, radio communities will no
longer be geographically restricted. Though, there will be
ways to facilitate radio-to-individual listeners interaction,
and listener-to-listener interaction, if they are part of the
same community (i.e., if they share tastes or if they are
connected). Mass media has lost space for social networks,
which is how people want to interact in the information age.
People want to share with friends what they like. They want
to play a role in the community they participate, being ac-
tive. Furthermore, they want exclusivity. Radialize is the
tool to make the transition of the radio from mass media to
social network. Other audio streaming services like Pan-

313

Figure 1: A snapshot of the Radialize front-end.

dora (www.pandora.com), Spotify (www.spotify.com) and
Last.fm (www.last.fm) cannot play this role, because they
are not adapting the almost 100-years-old media for so-
cial listening experience to our age’s needs, rather, they
built their services from scratch without relying on radio
stations. Pandora, Spotify and Last.fm are about music
playlist, whereas Radialize is about radio.

Radialize is implemented as a real-world tool that will be
available soon for free use. The first version, which is the
object of study in this paper, does not include any module
to facilitate radio stations to communicate with their users.
Rather, the first release is intended to gain the attention of
users. In this demonstration paper we present the Radial-
ize tool’s description and architecture along with its main
components and a demonstration of use.

2. DESCRIPTION OF THE TOOL
Radialize is a service for listening experience based on ra-

dio station programs. When compared to other solutions
like Pandora and Last.fm, Radialize’s main difference is on
the possibility of returning third-party services like radio sta-
tions, web radios, and playlists. Figure 1 presents a snapshot
of the Radialize’s front-end.

Below we present the main functional requisites for the
Radialize tool. The service must:

1. Allow users to listen to radio stations, connecting di-
rectly to the radio station server.

2. Allow users to search for artists, songs, radio stations,
genres, and user names (friends).

3. Return as result of a query a list of radio stations as-
sociated with the query.

4. Provide recommendation of artists, songs, radio sta-
tions, genres, and users.

5. Generate clickable clouds of words when users are in-
teracting, being the words artists, songs, radio sta-
tions, genres, or user names, all of them associated
with the query or the recommendation (based on user
profile).

6. When users click on an item of any cloud of words, the
system responds on the same way as for a search for
that item.

7. Allow users to explicitly rate artists and songs being
played on a radio station. Allow users to rate radio
stations.

8. Allow users to filter results for both recommendation
and search results. Examples of filters are local/non-
local, rare/popular, new-for-me/not-new.

9. Allow users to create situations, and to choose the situ-
ation(s) at any time. The concept of situation exists to
let users make sub-profiles out of their general profiles.

Below we present the main non-functional requisites for
the Radialize tool.

1. The system must provide recommendations based on
the user’s profile and based on the radios programs.

2. The Radialize’s graph similarity is based on how items
co-occur in radio stations. The more two songs co-
occur in a given radio station program, and the more
those two songs co-occur in different radio stations, the
more similar the songs are.

3. The user profile consists of explicit and implicit rat-
ings, where implicit rating means a set of actions al-
lowed for users. For instance, a skip is a negative im-
plicit feedback, whereas a volume increase is a positive
implicit feedback.

4. Any radio station transmitting through the Web must
be able to be included in the list of radios monitored
by Radialize. It means that the service needs to detect
the items being played in radio stations automatically,
since a relevant fraction of radio stations do not inform
what they are playing by metadata.

5. The result of the search must return in the top posi-
tions radio stations playing the item of the query, if
there is any.

6. Radios that stop their transmission due to any rea-
son (e.g. server break or maintenance) must also stop
being returned as a result of users’ interactions.

According to the requisites, we summarize the service of-
fered by Radialize in the following way: Radialize maintains
at real time information on what is being played in the set
of radio stations it monitors. There are two ways of identi-
fying the content played by a radio station: by means of the
metadata informed by the radio station or by means of signal
processing on the audio stream, which is very important to
be performed because the number of radio stations that do
not inform metadata is quite high2. The service then allows
users to search and to be recommended of items, which may
be artists, songs, radio stations, genres, and users. Every
search or recommendation request returns not only a music
experience (radio stations or playlist that start playing at
query time) but also a list of items to be displayed on the
associated cloud of words. Users can refine their search or
recommendation requests by using filters.

2For instance in Brazil we have found only 30 radio stations
that informed metadata, although 84% of the Brazilian ra-
dios transmit through the Web (http://goo.gl/DoOhc).

314

3. TECHNOLOGY BEHIND RADIALIZE
Radialize operates by relying upon a set of different tech-

nologies that allow for multimedia data crawling, indexing,
searching, and recommendation.

Before adding a new radio to the set of radio stations
covered by Radialize, it is necessary to discover the sources
of audio and metadata streaming (when it exists) for that
radio. This process is most of the times done automatically,
though it may require manual intervention. As soon as those
sources are found they are sent to one of the Radialize’s
crawlers to start being crawled.

Music content broadcast by a radio station is named a
media in Radialize architecture vocabulary. A media is
composed by the artist and song names. When a media
is crawled it is necessary to find out if it is already known
by Radialize database, so that its execution history can
be promptly updated, otherwise the media is joined to the
database.

In order to process queries Radialize needs to, both, use
an Information Retrieval system [1] to cope with approxi-
mate queries, and keep track of real-time data about what
is being played by each monitored radio station. When Ra-
dialize users search for a given subject they are not only
interested in finding that subject, but also in being intro-
duced to content related to that subject which they do not
know yet but are likely to appreciate. Radialize relies upon a
recommendation module to provide users with those recom-
mendations. The recommendation module uses the radios’
broadcast history to calculate the similarity between items
(artists, songs, etc) and then produces recommendations by
matching users’ profiles to those items.

Figure 2 presents the Radialize back-end architecture. This
architecture was designed to be easily scalable with hard-
ware in order to support an increasing number of radios
to be covered, while relying on commodity hardware. The
database layer is accessed through a Facade [2] which hides
the database manipulations implementation. It allows for
changes in the storage layer going unnoticed by any other
components of the back-end architecture.

Figure 2: Radialize high-level back-end architecture.

The back-end operation can be summarized as follows:

1. There are two kinds of Crawlers: textitMetadata and
Stream Crawlers. Metadata Crawlers extract radios’

metadata from the Web, check in the IdFinder if a
crawled media (artist/song) is known by the Radi-
alize’s database, and send the media to the Broker
along with its respective identifier, in case the media
is known.

2. Stream Crawlers extract radios’ audio content from the
Web, submit segments of the audio to the AudioFinder
in order to check by signal processing if a set of seg-
ments represents a song occurrence. In case an occur-
rence is found, the Stream Crawler sends the media to
the Broker along with its respective identifier.

3. The Broker forwards the data received from the Crawlers
to the PlayingNowServer and to the UpdateServer.

4. The PlayingNowServer is responsible for holding data
such as which artists and songs are being played at
each radio station.

5. The UpdateServer is responsible for updating the in-
dexes and the database with the new incoming data,
may it be a new artist, a new song, or simply one more
entry to be stored into the execution history. It uses
the IdFinder and the AudioFinder for doing its job.

6. Radialize maintains two text indexes to support IdFinder
requests: update index and search index. The update
index is queried by the UpdateServer in order to check
if an incoming media is unknown. The search index is
responsible for serving users’ queries. The decision of
keeping two indexes aims at eliminating the competi-
tion between users’ queries and the discovery module,
since the latter needs to access the index to evaluate
each incoming media. Both indexes are guaranteed to
be always in the same state.

7. In case a media is found to be new, it is inserted into
the database and the associated primary keys are re-
trieved and inserted into both indexes. The new media
is then re-sent to the Broker in order to make the Play-
ingNowServer aware of it. Otherwise, the incoming
media is simply written into the execution history. The
MusicBrainz search server [4] is also used as source for
finding medias, apart from the Radialize’s database.

8. Radialize also maintains an audio index to support the
job of the AudioFinder module. The audio index con-
tains all the songs known by the Radialize database.
New songs are indexed as soon as they are identified
by metadata crawlers, and then receive identifiers from
the UpdateServer. Note that labeled items (found by
Metadata Crawlers) are used by the system to learn a
content and then to allow content discovery in other
radio stations by means of signal processing via Stream
Crawlers.

9. When users perform a search or a recommendation re-
quest, their request gets at the back-end, which asks
the SearchServer to identify the requested item. Next,
the Recommender module is requested to provide rec-
ommendations related to that item. We used the IRF
framework [3] to create our recommender system. Af-
ter the recommendations are calculated, the Recom-
mender sorts them according to which items are play-
ing at the moment by using the services provided by
the PlayingNowServer. If no recommended item is
playing at the query time, the order initially set by
the Recommender is kept.

315

Figure 3: Cloud of artists for the query “Psy”.

10. Recommended radios are played by connecting the Ra-
dialize player directly to the audio streaming server
used by the radio.

Observe that the IdFinder uses the update index to find
out if an incoming media is new, whereas the AudioFinder
uses the audio index to accomplish the same task. When
a media is found to be new, it arrives at the UpdateServer
which inserts the media into the database and notifies the
IdFinder, which indexes the new song into both, update
and search indexes. Next the UpdateServer notifies the Au-
dioFinder informing the physical location of the recorded
stream, as well as the beginning and ending times of the
media within the record. The AudioFinder then accesses
the audio record and retrieves the segment contained within
the informed time frame, indexing it as a song into the audio
index.

4. USE CASE
The Radialize tool is available for beta users, which are

allowed to create their own account at www.radialize.com.
br/register. We have also created an account with the goal
of presenting the use case in this section (www.radialize.
com.br – username ‘WWW2013-1’, password ‘WWW’). Read-
ers may feel free to use the WWW account or to create their
own accounts to experiment the tool.

In order to demonstrate an important feature of Radialize,
we have performed the following case study: we searched in
Google for “top ten songs of 2012” and chose two of the
main results, which were a top ten list by MTV (http://
goo.gl/p5Vyw) and a top ten list by Spotify (http://goo.
gl/Px8Fs). We observed the artists/bands present in the
lists, and chose three of then to be searched in Radialize.
Then we compared the results returned by Radialize with
the artists in the two lists. The artists/bands present in the
top 10 lists are: Gotye, Fun, Carly Rae Jepsen, Maroon 5,
One Direction, Flo Rida, M83, The Wanted, Nicki Minaj,
Taylor Swift, Kanye West, and Psy.

Figure 1 in Section 2 presented the Radialize interface for
the query “Carly Rae Jepsen”, where the cloud of artists can
be observed. Figures 3 and 4 present the cloud of artists re-
spectively for the queries “Psy” and “Gotye”. We observe
that most of the artists present in the list above are con-
sidered by Radialize as similar with respect to each of the
searched artist, which is an expected result since Radialize
is capturing well the concept of similar artists based on the
radio station programs. Actually, Radialize can be used to
generate its own list of top ten artists and songs for a given
period of time.

5. CONCLUSIONS AND FUTURE WORK
For almost 100 years radio has been a tool for mass com-

munication. People from a given community listen to the

Figure 4: Cloud of artists for the query “Gotye”.

same songs, talk shows, sport events, and advertising. The
problem is that in the information age we live today the
communities are no longer defined because of people’s ge-
ographical locations like it had been for a relevant part of
those almost 100 years of the presence of radio stations. Ra-
dialize aims at being the tool for radio stations to cross the
barrier of the information age. In the future, Radialize will
deliver to each user the best content, according with the
user’s taste. A given user may receive songs from a radio
station in another country, talk shows from a radio station
distant a thousand kilometers, and specific, directed, and
local advertising.

This demonstration paper has presented the first release of
Radialize, which incorporates a substantial set of functional-
ities which will start enabling Radialize as the tool for social
listening experience. Radialize has been properly designed
to be the disruptive innovation that will be responsible for
the transition of radio stations as a kind of mass media to a
kind of social network.

As future work there is a set of features to be included
in Radialize. For instance, given that the taste of users is
already being modeled, it is easy to offer a service for music
playlists like Pandora and Last.fm. An example of a more
sophisticated feature to be included soon is a component for
speech recognition in radio programs. The idea is to allow
users to search for words, and then return the radio whose
words are being said on that radio. Because Radialize is
about radio, which is used to listen to news and talk shows
as well.

6. ACKNOWLEDGEMENTS
This work was funded by the AudiInfo Project–grant CNPq

PDI 560285/2010-8, with all the support of DECOM/ UFOP
and its R&D lab Idealize (www.idealizelab.com.br).

7. REFERENCES
[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.

Modern Information Retrieval – The Concepts and
Technology behind Search. Pearson, 2nd edition, 2011.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[3] Felipe Martins Melo and Álvaro Pereira, Jr. A
component-based open-source framework for
general-purpose recommender systems. In Proceedings
of the 14th international ACM Sigsoft symposium on
Component based software engineering, CBSE’11, pages
67–72, New York, NY, USA, 2011. ACM.

[4] A. Swartz. MusicBrainz: A semantic web service. In
Intelligent Systems, IEEE, pages 76–77, USA, 2002.

316

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130404103603
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130404103603
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

