
ALFRED: Crowd Assisted Data Extraction

Valter Crescenzi, Paolo Merialdo, Disheng Qiu
Dipartimento di Ingegneria

Università degli Studi Roma Tre
Via della Vasca Navale, 79 – Rome, Italy

{crescenz, merialdo, disheng}@dia.uniroma3.it

ABSTRACT
The development of solutions to scale the extraction of data
from Web sources is still a challenging issue. High accu-
racy can be achieved by supervised approaches, but the
costs of training data, i.e., annotations over a set of sam-
ple pages, limit their scalability. Crowdsourcing platforms
are making the manual annotation process more affordable.
However, the tasks demanded to these platforms should be
extremely simple, to be performed by non-expert people,
and their number should be minimized, to contain the costs.
We demonstrate alfred, a wrapper inference system super-
vised by the workers of a crowdsourcing platform. Training
data are labeled values generated by means of membership
queries, the simplest form of queries, posed to the crowd.
alfred includes several original features: it automatically
selects a representative sample set from the input collection
of pages; in order to minimize the wrapper inference costs,
it dynamically sets the expressiveness of the wrapper for-
malism and it adopts an active learning algorithm to select
the queries posed to the crowd; it is able to manage inaccu-
rate answers that can be provided by the workers engaged
by crowdsourcing platforms.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services —Web-based services

General Terms
Algorithms, Experimentation

Keywords
wrapper generation, data extraction, crowdsourcing, active
learning

1. INTRODUCTION
Although many research efforts concentrated on the de-

velopment of methods and tools to generate web wrappers,
large-scale data extraction is still a challenging issue. Sev-
eral researchers investigated unsupervised data extraction
solutions to scale the extraction task [3]. These solutions
adopt sophisticated algorithms to exploit the regularity of

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

web pages, but their applicability results compromised by
the low precision of the inferred wrapper.

The recent advent of crowdsourcing platforms (such as, for
example, Amazon Mechanical Turk) can open new opportu-
nities for supervised approaches. These platforms provide
support for managing and assigning mini-tasks to people.
In the wrapper production process, crowdsourcing platforms
can be used to produce massive training data for supervised
wrapper inference systems. As they facilitate the involve-
ment of a large number of persons to produce the training
data, we may say that they represent a solution to “scale-
out” the wrapper generation process. However, to obtain an
efficient and effective process, two main issues need to be ad-
dressed. First, since tasks are performed by non-expert peo-
ple, they should be extremely simple. Second, since the costs
of producing wrappers become proportional to the number
of tasks, the number of training data produced by the crowd
to infer a wrapper should be minimized.

In this work we present alfred [4], a supervised system
that leverages workers engaged from a crowdsourcing plat-
form to provide the needed training data. The tasks consist
of a sequence of membership queries (MQ), which are the
simplest form of queries, since they admit only a yes/no an-
swer (e.g. “Is ‘City of God’ the title of the movie in the
page ? ”) [1]. The MQ answers provided by the workers are
exploited by alfred to infer the extraction rules.

To address the costs issue, our system proposes an active
learning approach [7] that selects the most effective queries
to quickly infer an accurate wrapper, thus minimizing the
number and the cost of the tasks assigned to the crowdsourc-
ing platform.

The traditional approach to build wrappers for large web-
sites is to provide training data for the attributes of interest
on a set of sample pages, and then to apply an inference al-
gorithm to learn a wrapper. There are two hidden assump-
tions behind the approach: (i) the wrappers inferred from
the sample set, hopefully work also on the whole set of input
pages, (ii) the formalism used by the learning algorithm to
specify the wrapper is sufficiently expressive.

alfred addresses these issues: during the sampling phase
the system processes the input pages to prune the large num-
ber of pages, selecting only a small yet representative set
of pages; during the learning phase, the system infers the
extraction rules by dynamically and lazily expanding the
expressiveness of the formalism used to specify the extrac-
tion rules. Overall, the number of MQ needed is drastically
reduced and the accuracy of the inferred rules is greatly in-
creased, as explained in the following.

297



Figure 1: The DOM of three pages about movies

XPath rules

r1 /html/table/tr[1]/td/text()
r2 //*[contains(.,“Rating:”)]/../preceding-sibling::*[1]/td/text()
r3 //*[contains(.,“Director:”)]/../preceding-sibling::*[2]/td/text()

Table 1: XPath rules extracting the movie title

Sampling. Traditional approaches largely neglect the im-
portance of correctly sampling large set of input pages. Most
frequently, a fixed-size subset of randomly selected pages is
chosen. However, this easily leads to biased samples that
compromise the quality of the inferred wrapper, i.e., sam-
ples that do not show the full set of variations of the HTML
template in the whole set of input pages. For example, a sel-
dom optional field hardly shows in a small set of randomly
selected pages.

Other approaches rely on locally available databases to au-
tomatically generate the needed training data [5, 6]. How-
ever, also the training data obtained in this way is often
biased, since famous entities are much more frequently sam-
pled than less popular ones.

With respect to these approaches, ours includes an ex-
haustive processing of the whole set of input pages which is
reduced to a small but accurately selected unbiased set of
representative pages.

Expressiveness. Consider the pages sketched in Figure 1:
suppose that the Title of the movies has to be extracted.
Observing the first annotated page p1, a possible set of can-
didate rules are {r1, r2, r3} shown in Table 1. The correct
rule r1 can be separated from the wrong rules r2 and r3, by
requiring additional training data, like pages p2 or p3 anno-
tated with the correct value to extract. If the expressiveness
of the extraction language is limited to simple rules like r1,
then a second sample page is not needed. On the contrary,
if rules such as r2 and r3 are generated, additional training
data are needed just to discard these wrong rules.

The formal languages for specifying wrappers in tradi-
tional approaches are designed statically, and their expres-
siveness cannot be changed without seriously revisiting the
inference algorithm. Therefore, the class of extraction rules
is usually oversize and additional samples are required only
to compensate with the excess of expressiveness.

2. ALFRED ARCHITECTURE
The alfred approach to scale the data extraction issue

consists of a supervised wrapper inference process, which
relies on the results of mini tasks submitted to the crowd.

alfred takes as input a (possibly very large) collection of
pages containing data of interest. The data to be extracted
are specified by annotating its value over a single input page.
Based on the input annotation, the system produces an ini-
tial set of candidate rules from which it has to select the
most accurate one over the whole set of input pages. How-
ever, to keep the system efficient, the rules are evaluated
over a small subset of the input pages suitably selected by
a sampling algorithm. The system learns the rules by pos-
ing simple queries to crowd workers. To address the usual
unreliability of crowdsourcing workers, the same tasks are
proposed to several different workers, and the correct an-
swers are determined based on a consensus based approach.

Figure 2 illustrates the architecture of the alfred system,
as well as the flow of the process. The input of the system
is a set of URLs and a first annotated sample page. The
initial annotation represents an example of the data to be
extracted; they can be produced manually, or they can be
computed starting from data already available in a local
repository.

The whole set of pages is then processed by the Sampler,
which aims at selecting a representative set of pages, i.e.,
pages whose templates contain all the variants appearing
in the whole input collection of pages. The representative
set is then passed to the Crowd Manager, which generates
multiple tasks and submits them to a crowdsourcing plat-
form. The workers engaged by the crowdsourcing platform
are redirected to an interactive web application interfaced to
the Active Learner module.1 Each worker is asked to accom-
plish a task, consisting of a set of membership queries. Each
query asks to the worker whether a proposed value is correct
or not. Based on the worker’s answers, the Active Learner
module produces the extraction rules. To manage the possi-
ble presence of inadvertent mistakes and adversarial “spam-
ming” answers, the Crowd Manager submits a redundant
number of tasks and solves the conflicts among the provided
answers.

We now give a more detailed description of the main mod-
ules of the system.

2.1 Sampler
This module works off-line. It receives as input the whole

set of input pages (e.g., the list of 2 · 106 movie pages from
IMDB) and one annotated page. As output, the Sampler
returns a smaller set of pages, which is representative of
all the variations of the HTML template in the input set of

1A copy of the web application is available at
http://alfred.dia.uniroma3.it.

298



Figure 2: alfred Architecture

pages. Typically, even with very large collections, the output
representative set contains just a few dozens of pages.

To detect the differences among the HTML templates,
for each attribute the system automatically generates a first
pool of candidate extraction rules that are capable of ex-
tracting its value over the annotated page. For example,
suppose that we want to extract the title of movies from the
pages in Figure 1, and that page p1 is the initial page on
which ‘City of God’ is the annotated value. The rules r1,
r2, and r3 shown in Table 1 represent examples of extrac-
tion rules that could be generated to extract such annotated
value. We observe that for every pages that share the same
template of p1, the above three rules would behave in the
same way, that is, they would extract the same value. How-
ever, these rules might return different values when applied
on pages with a different template. Continuing our exam-
ple, observe how r1, r2 and r3 do not extract the same value
when applied over p2: r1 extracts ‘Oblivion’, r2 and r3 do
not extract anything.

Overall the different behaviors of candidate extraction
rules make apparent differences among the HTML template
of the input pages. Our sampling algorithm builds on these
intuitions [4]. It works incrementally by selecting a subset
of representative pages from the whole set of input pages: it
adds a page to the representative sample whenever the page
exhibits new differences among the candidate rules.

2.2 Active Learner
This module is at the core of the system: it implements an

active learning algorithm that generates the queries to pose
to the workers in order to infer the extraction rules while
minimizing the learning costs [4].

As discussed in the previous section, the costs of learning
an extraction rule depend on the expressiveness of the class
of rules. Unlike traditional approaches we do not work with
a statically defined class, but we adopt an original approach,
inspired to structural risk minimization (SRM), a statistical
learning principle [9, 8], in which the expressiveness of the
language is determined at runtime. To this end, we organize
the class of candidate rules into a hierarchy of classes of in-
creasing expressiveness: initially the correct rule is searched
only within the less expressive class; then, a class of rules

is lazily expanded only if it is actually needed. To decide
whether and when expanding the set of candidate rules, a
probabilistic model evaluates the quality of the wrapper, by
computing the probability that the candidate rules in the
current class of rules are correct.

The algorithm starts by looking for a rule within the class
with the lowest expressiveness, and computes the probability
of its correctness. If such a probability is not adequate, the
algorithm expands the class, and consequently poses more
membership queries, thus enlarging the number of answers
collected by the workers. In order to choose the appropriate
membership queries, the algorithm uses an active approach,
which aims at selecting the best queries to converge to the
solution, then minimizing the total number of queries. The
process is repeated until either it finds a rule with a satis-
factory probability, or it concludes that it is unlikely that
this rule exists.

2.3 Crowd Manager
This module manages the interaction with the crowd-

sourcing platform2 with a twofold responsibility: it engages
the workers from the crowdsourcing platform, and it solves
possible conflicts among the workers’ answers.

To enroll the workers, the Crowd Manager submits several
tasks to the crowdsourcing platform. The engaged workers
are redirected to the alfred web application, where they
start to interact with the Active Learner module. Whenever
a worker has answered to a sufficient number of queries to
allow the system to infer a bunch of extraction rules, the
Crowd Manager returns a code that the worker inserts into
the crowdsourcing platform to prove the task fulfillment.

Presenting HTML pages downloaded from an external
server into a web application under our control is not triv-
ial: client side scripts and dependencies on remote resources
could prevent the pages to be rendered outside the server
originally publishing them. During the downloading, we
generate pre-computed images of the pages selected by the
Sampler to overcome these issues.

2We rely on CrowdFlower (http://www.crowdflower.com),
a “meta” crowdsourcing platform interfaced to several
crowdsourcing services, including Amazon Mechanical Turk.

299



Figure 3: Web application interface

Site Entity # pages

www.imdb.com Actor 5 · 106

www.imdb.com Movie 2 · 106

www.allmusic.com Band 3 · 106

www.allmusic.com Album 2, 4 · 106

www.nasdaq.com Stock quote 7 · 103

Table 2: Dataset

The Crowd Manager also deals with the intrinsic inaccu-
racy of the workers. We adopt a standard approach based
on the submission of redundant tasks, and collect the an-
swers to the membership queries assuming that they may
include mistakes. Then, we apply an algorithm for learn-
ing from noisy samples [2] suitably adapted in our context.
The algorithm ranks the set of candidate rules according to
the number of conflicting answers; in our implementation,
the answers are also weighted according to the estimated
accuracy of the workers.

To estimate the accuracy of the workers, the Crowd Manager
leverages some facilities provided by crowdsourcing plat-
forms. First, it considers the general reputation of the worker;
in addition, in order to check the reliability of the workers in
the specific tasks proposed by alfred, the Crowd Manager
submits to newly engaged workers a task composed by ques-
tions whose answers are know in advance to the system (a
golden set). In this way, the Crowd Manager can directly
evaluate the accuracy of the worker (or even reject bad work-
ers).

3. DEMO DESCRIPTION
In this demonstration we present the different modules of

alfred at work.3 Table 2 shows the collections of pages that
we use during the demonstration. Observe they contain a
large number of pages. Since the Sampler needs a few hours
to elaborate such a large number of pages, we pre-compute

3A screencast of the demonstration can be found in
http://www.youtube.com/watch?v=qEgGf-DQhq8.

the representative sample sets: during the demonstration we
show a log of the run, and the output sample pages.

We show how the Sampler is able to select a small repre-
sentative set of a few dozens of pages from large input sets
of millions of pages such as those in Table 2.

To illustrate the Active Learner module, we show the web
application at work: the attendees act as workers of a crowd-
sourcing platform and they are asked to complete the tasks
submitted by alfred. Each task consists of about 20 mem-
bership queries, which are posed by the web application
through the interface shown in Figure 3: it visualizes one
page, and proposes a simple question about one value ex-
tracted from the page. To ease the worker, the application
also highlights the area containing the value involved in the
query. Also, we demonstrate how the system works behind
the scenes: we show the probability that it computes for
the set of candidate extraction rules, and how it chooses the
queries in order to quickly converge to the correct extrac-
tion rule. Finally, we demonstrate the SRM technique at
work by showing the expansion of the current set of can-
didate rules operated by the Active Learner whenever the
probability that the correct rule has been already generated
becomes lower than a threshold.

The work done by the Crowd Manager is demonstrated by
illustrating how it processes incorrect answers provided by
the attendees. Also, in order to show the estimation of the
workers’ accuracy, we will present the statistics that we are
collecting in several experiments that we are already running
over real crowdsourcing platforms.

Finally, we submit several tasks on a crowdsourcing plat-
form for demonstrating to the attendees the overall execu-
tion of our crowd assisted data extraction system.

4. REFERENCES
[1] D. Angluin. Queries revisited. Theor. Comput. Sci.,

313(2):175–194, 2004.

[2] D. Angluin and P. Laird. Learning from noisy
examples. Mach. Learn., 2(4):343–370, Apr. 1988.

[3] V. Crescenzi and P. Merialdo. Wrapper inference for
ambiguous web pages. Applied Artificial Intelligence,
22(1&2):21–52, 2008.

[4] V. Crescenzi, P. Merialdo, and D. Qiu. A framework for
learning web wrappers from the crowd. WWW, 2013.

[5] N. N. Dalvi, R. Kumar, and M. A. Soliman. Automatic
wrappers for large scale web extraction. PVLDB,
4(4):219–230, 2011.

[6] T. Furche, G. Gottlob, G. Grasso, O. Gunes, X. Guo,
A. Kravchenko, G. Orsi, C. Schallhart, A. J. Sellers,
and C. Wang. DIADEM: domain-centric, intelligent,
automated data extraction methodology. In WWW
(Companion Volume), pages 267–270. ACM, 2012.

[7] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

[8] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and
M. Anthony. Structural risk minimization over
data-dependent hierarchies. IEEE Transactions on
Information Theory, 44(5):1926–1940, 1998.

[9] V. Vapnik. An overview of statistical learning theory.
IEEE Transactions on Neural Networks, 10(5):988–999,
1999.

300




