
CSS Browser Selector Plus: A JavaScript Library
to Support Cross-browser Responsive Design

Richard Duchatsch Johansen
W3C Accessibility WG Member and

Senior Front-end Developer at
Eventials – Rua Itapaiúna, 2434

São Paulo – SP – Brazil, Zip Code
05707-001

+55 14 9711-7983
ridjohansen@gmail.com

Talita C. Pagani Britto
Assistant Coordinator

of Educational Projects - MStech
Rua Joaquim Anacleto Bueno, 1-42

Bauru – SP – Brazil,
Zip Code 17047-281
+55 14 3235-5500

talita.britto@mstech.com.br

Cesar Augusto Cusin
Professor at Faculdade Paraíso do
Ceará and W3C Accessibility WG

Member – Rua da Conceição, 1228
Juazeiro do Norte – CE – Brazil,

Zip Code 63010-465
+55 15 8100-4466

cesar@cusin.com.br

ABSTRACT
Developing websites for multiples devices have been a rough task
for the past ten years. Devices features change frequently and new
devices emerge every day. Since W3C introduced media queries
in CSS3, it’s possible to developed tailored interfaces for multiple
devices using a single HTML document. CSS3 media queries
have been used to support adaptive and flexible layouts, however,
it’s not supported in legacy browsers. In this paper, we present
CSS Browser Selector Plus, a cross-browser alternative method
using JavaScript to support CSS3 media queries for developing
responsive web considering older browsers.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – frameworks.

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces – standardization.

H.5.4 [Information Interfaces and Presentation (e.g., HCI)]:
Hypertext/Hypermedia – architectures.

Keywords
Responsive Web Design, cross-browser, web standards,
JavaScript.

1. INTRODUCTION
Nowadays, we are facing a bias on web development to support
different devices, platforms and web browsers that increases in
variety every day. As media queries are not supported in older
browsers, novel approaches, such as code scripts named polyfills
or fallbacks, were developed to provide this functionality in
browsers that don’t support it. However, these polyfills and
fallbacks present limitation in its usage and often lack some
features. This paper presents a cross-browser JavaScript library
named CSS Browser Selector Plus, a script that allow developers
to work with responsive web design for older browsers.

2. CSS3 MEDIA QUERIES
CSS Media queries allow you to target CSS rules based on - for
instance - screen size, device-orientation or display-density. This

means you can use CSS Media Queries to tweak a CSS for a
mobile devices, printer or create a responsive site.

Media queries is an extension to the @media (or media=””
attribute, in <link> tag) specification on CSS, allowing
declaration of conditional queries expressions to detect particular
media features, such as viewport width, display color, orientation
and resolution [1], as shown on Table 1.

Table 1. Example of CSS3 media queries expressions

Feature Query

Maximum viewport
width of 480px

@media screen and (max‐
width:480px)

Landscape orientation
@media all and
(orientation:landscape)

Widescreen displays
(16:9)

@media screen and (device‐
aspect‐ratio: 16/9)

Display with minimum
width of 400px and
maximum of 700px

@media screen and (min‐width:
400px) and (max‐width: 700px)

Its basic syntax consists of:

@media <mediatype>[<boolean_operator> (<condition>)]

Where the expression [<boolean_operator> (<condition>)]
can be repeated to accomplish multiple conditions.

2.1 Fallbacks and Polyfills
Once media queries were introduced in CSS3 specification, it’s
not supported by legacy browsers such as Internet Explorer 8 (and
older). To emulate this functionality in browsers that don’t
support it natively, there are several polyfills – often called as
fallback – available:

 css3-mediaqueries-js: the library css3-mediaqueries-js is
one of the most used to empower the use of media queries in
older browsers. It’s usage consists in just add the JS file to
the HTML document and use media queries as usual on CSS
[2].

 Respond.js: Respond.js is a JS polyfill to support only the
min/max-width of CSS3 Media Queries. Its focus is the
support to legacy versions of Internet Explorer [3].

 Mediatizr: Mediatizr is a JS library to allow media queries
support to older browsers. The features detected by Mediatizr

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

27

include min-width/max-width, min-device-width/max-
device-width [4].

 matchMedia: The script matchMedia is a polyfill helper to
test on JavaScript whether a CSS media type or media query
applies, however, it doesn’t empower the use of media
queries in CSS documents. MatchMedia is used in
Respond.js [5].

 jQuery Media Helpers: Similar to matchMedia, jQuery
Media Helpers is a utility script to handle cross-browser
media queries features and behavior on JavaScript, not being
applicable to enable cross-browser media queries in CSS [6].

However, current polyfill libraries available detects only a subset
of media queries features, usually [device‐]<min|max>‐width.
Furthermore, css3-mediaqueries-js and Respond.js doesn’t work
with @imported style sheets and do not listen to media attribute of
<link> and <style> elements, what make their usage restrict.
Similarly, the library Mediatzr doesn’t work with the <style>
element. The matchMedia and jQuery Media Helpers libraries are
useful for JavaScript-only use, as they are not intended to listen
and parse media queries from CSS documents

3. PROPOSED SOLUTION

3.1 CSS Browser Selector
The CSS Browser Selector is an open-source library composed by
a single JavaScript (JS) file, originally created to empower CSS
selectors and write specific CSS code for different operating
systems and web browsers without CSS hacks [7]. Similar to
Modernizr [8], CSS Browser Selector adds classes to the <html>
tag but, instead of feature detection, it detects the user’s operating
system (OS) and web browser. We proposed an extension called
CSS Browser Selector Plus to support media queries features as
an alternative method to the native CSS3 media queries. The
generated classes on the <html> tag indicate characteristics such
as device orientation, screen width and support to retina displays.

3.2 Syntax
The basic syntax to use the generated classes is:

.[feature1][.[feature2][…].[featureN]]
[.class|#ID|tag] { property: value }

Once the script adds CSS classes to the <html> tag, it’s just
needed to precede selectors with the desired feature. Table 2
presents some of the possible CSS classes generated:

Table 2. Example of CSS classes generated by the script

Feature Generated code

Landscape orientation
<html
class=”orientation_landscape”>

No support to HiPDI
and support to DataURI

<html class=”no‐hidpi datauri”>

Minimum screen width
of 980px and maximum

width of 1199px in
portrait orientation

<html
class=”orientation_portrait
minw_980 maxw_1199”>

4. SAMPLE CODES

4.1 Data URI Selector
Data URI is a scheme defined in RFC 2397 [9] that allow to
embed immediate data instead of usual URLs to load a certain

resource. In CSS, this is used in background/background‐image
to specify binary codes for images encoded in base64 encoding,
improving web page performance since the browser doesn’t need
to make an HTTP request to load a resource. Data URIs have
been supported by Internet Explorer 8.0+ (partial support),
Firefox 16.0+, Chrome 23.0+, Safari 5.1+, Opera 12.1 [10],
considering desktop browsers. Figure 1 shows how it’s possible to
deal with browser that support Data URI and browsers that don’t
support it, presenting a regular file URL.

Figure 1. Filtering DataURI support and providing fallback
for non-supported browsers

4.2 Screen Width
CSS Browser Selector Plus supports detection of viewport
minimum and maximum width, updating on browser resizing.
When there’s no minimum width, the default value is zero
(minw_0). Figure 2 presents examples of screen width filters
comparing media queries and generated classes from the script.

Figure 2. Example of width filters with media queries and
CSS Browser Selector Plus

4.3 HiDPI and Pixel-Ratio Selectors
HiDPI, often referred as “Retina”, is the name given to displays
with high pixel density, presenting a better quality on screen view
[11]. The detection of this feature is done through the device‐
pixel‐ratio and min‐resolution. Non-retina displays present
device‐pixel‐ratio of 1.0, while displays with high definition
present device‐pixel‐ratio of 1.5 and full HiDPI and retina

28

displays have usually the value of 2.0 [12]. Figure 3 shows how
device‐pixel‐ratio can be used in media queries to detect
retina displays. Notice that, as it’s an experimental feature, it need
to be have browser’s prefix. On Figure 4, we present how this can
be done with a friendly syntax by using the classes .hidpi and
.retina_1x/.retina_2x.

5. FINAL THOUGHTS
Legacy browsers and cellphones do not have support to media
queries and current polyfill libraries to enable CSS3 media
queries support in this scenario don’t contemplate all features of
media queries and have limited usage. Our proposed solution,
CSS Browser Selector Plus, is a lightweight script to allow web
developers work with responsive web design for a wide variety of
web browsers. It provides a friendly syntax to ensure a
progressive enhanced code, ensuring basic functionalities for
browsers that don’t support specific features and provide
advanced functionalities for newer browsers. While current
polyfills and fallbacks attempt to emulate the support to media
queries expressions, our proposed solution can be used as a
substitute for media queries. As an open-source work, CSS
Browser Selector Plus is available at GitHub
(https://github.com/ridjohansen/css_browser_selector) for
contribution from community.

6. ACKNOWLEDGMENTS
Thanks to Rafael Lima for authorizing the diffusion of the library
described in this paper.

Figure 3. HiDPI detection through media queries using
device-pixel-ratio and min-resolution

7. REFERENCES
[1] W3C. Media Queries. Standards. Retrieved February 12,

2013 from: http://www.w3.org/TR/css3-mediaqueries/

[2] Graaf, W. css3-mediaqueries-js. Retrieved February 13,
2013, from Google Code: http://code.google.com/p/css3-
mediaqueries-js/

[3] Jehl, S. Respond. Retrieved February 13, 2013, from
GitHub: https://github.com/scottjehl/Respond

[4] Delogu, A. mediatizr. Retrieved February 13, 2013, from
GitHub: https://github.com/pyrsmk/mediatizr

[5] Jehl, S., Irish, P., Zakas, N. matchMedia.js. Retrieved
February 13, 2013, from GitHub:
https://github.com/paulirish/matchMedia.js/

[6] Jehl, S. jQuery Media Helpers. Retrieved February 13, 2013,
from GitHub: https://github.com/scottjehl/jQuery-Media-
Helpers

[7] Lima, R. CSS Browser Selector. Retrieved February 13,
2013, from: http://rafael.adm.br/css_browser_selector/

[8] Ateş, F. et al. Modernizr. Retrieved February 13, 2013, from:
http://modernizr.com/

[9] Masinter, L. The “data” URL scheme. Retrieved February
13, 2013, from IETF: http://tools.ietf.org/html/rfc2397

[10] Can I Use... Data URIs. Retrieved February 13, 2013, from
Can I Use…: http://caniuse.com/#search=uri

[11] Retina Display. Retrieved February 14, 2013, from
Wikipedia: http://en.wikipedia.org/wiki/Retina_Display

[12] Edwards, M. Device pixel density tests. Retrieved February
14, 2013, from: http://bjango.com/articles/min-device-pixel-
ratio/

Figure 4. HiDPI detection using CSS Browser Selector Plus

29

