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ABSTRACT

Scalable processing of Semantic Web queries has become a criti-
cal need given the rapid upward trend in availability of Semantic
Web data. The MapReduce paradigm is emerging as a platform of
choice for large scale data processing and analytics due to its ease
of use, cost effectiveness, and potential for unlimited scaling. Pro-
cessing queries on Semantic Web triple models is a challenge on
the mainstream MapReduce platform called Apache Hadoop, and
its extensions such as Pig and Hive. This is because such queries re-
quire numerous joins which leads to lengthy and expensive MapRe-
duce workflows. Further, in this paradigm, cloud resources are ac-
quired on demand and the traditional join optimization machinery
such as statistics and indexes are often absent or not easily sup-
ported.

In this demonstration, we will present RAPID+, an extended
Apache Pig system that uses an algebraic approach for optimizing
queries on RDF data models including queries involving inferenc-
ing. The basic idea is that by using logical and physical operators
that are more natural to MapReduce processing, we can reinterpret
such queries in a way that leads to more concise execution work-
flows and small intermediate data footprints that minimize disk
I/Os and network transfer overhead. RAPID+ evaluates queries us-
ing the Nested TripleGroup Data Model and Algebra (NTGA). The
demo will show a comparative evaluation of NTGA query plans vs.
relational algebra-like query plans used by Apache Pig and Hive.
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1. INTRODUCTION AND MOTIVATION

In recent years, large scale data processing platforms based on
the MapReduce [1] framework have been widely adopted for scal-
able processing of (semi) structured and unstructured data on the
Web. For example, large production MapReduce clusters with as
many as 10K nodes using hundreds PB of storage are being em-
ployed in Web companies such as Yahoo! and Facebook. They
are used to process the data crawled from the Web' and the data

! Yahoo Developer Network: http://developer.yahoo.com/blogs/hadoop
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produced from 500 million users?, respectively. Publicly available
Semantic Web data is showing similar growth rates with other data
in the web. For example, the data represented using the founda-
tional data model for the Semantic Web called RDF® is now over
several billions of triples4 (the basic unit of RDF) on the Web. Thus,
it is worthwhile exploring how MapReduce-based systems can be
leveraged for scalable processing.

In MapReduce, data processing tasks (or queries) are encoded
in terms of a sequence of Map and Reduce function pairs (or MR
workflows). In the extended MapReduce systems such as Hive® and
Pig®, a high-level data primitive (e.g., relational join operation) is
mapped into a single MapReduce cycle. Each MapReduce job in-
volves high disk and network I/O costs for sorting and transferring
intermediate data between Map and Reduce functions. Therefore,
for the queries requiring multiple MR jobs, processing costs com-
pound across MR workflows. RDF is a fine-grained model repre-
senting relationships as binary relations, and querying against RDF
usually requires multiple join operations to reassemble related data.
Therefore, processing RDF queries on MapReduce often leads to
lengthy MR workflows. Such flows pose limitations on how op-
erations can be grouped into fewer MapReduce cycles i.e. shorter
workflows, and the case of inference-based queries such as those
that use RDF(S)” entailment is even more challenging since rewrit-
ing such queries for execution usually yields even more complex
queries, which forms the multiple unions of conjunctive queries.
Another important issue is that MapReduce-based systems gener-
ally lack the traditional join optimization machinery like statistics
and indexes. Further, it is not clear how to support such techniques
without significant overhead given the large pre-processing times
which may lead to financial overhead in rented cluster scenarios
like using Amazon cloud services. Also, distributed Hadoop-based
indexing techniques like HBase® do not currently support joins ef-
ficiently.

In this demonstration, we will present an extended Apache Pig
system called RAPID+[2], that uses an alternative algebraic frame-
work for optimizing queries on RDF data models including inference-
based queries to best suit the nuances of MapReduce processing.
The basic idea is that by using logical and physical operators that
are more natural to MapReduce processing, we can reinterpret such
queries in a way that leads to more concise execution workflows
and small intermediate data footprints which minimizes overall costs

2Facebook Engineering Note: http://www.facebook.com/Engineering/notes
3Resource Description Framework: http://www.w3.org/TR/rdf-concepts
4Statislics on the Linked Data: http://stats.lod2.eu

5Apache Hive: http://hive.apache.org

Apache Pig: http://pig.apache.org

RDF Semantics: http://www.w3.org/TR/rdf-mt
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Consider triple relation T and query Q with two star-patterns:
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Figure 1: Processing of a graph pattern query () with two star-patterns stp; and stp> over a triple relation 7': a) The execution plan
based on the relational-style approach and b) The NTGA-based plan

of processing. The RAPID+ data model and algebra is called Nested
TripleGroup Data Model and Algebra (NTGA)[4], and is fully in-
tegrated into Apache Pig. Also, the demo will show comparisons
of NTGA operators and query plans and the relational-style algebra
query plans used by systems such as Apache Pig and Hive, along
with a comparative performance of the two types of plans for graph
pattern queries and simple ontological queries.

2. PROCESSING RDF GRAPH PATTERN
QUERIES ON MAPREDUCE

RDF and SPARQL. An RDF database is a collection of triples
(Subject, Property, Object) where Property is a named binary re-
lation between resources (identified using URIs) or between re-
sources and literal values. For example, in Fig.1(b), we have some
simplified triples from the BSBM® benchmark dataset. The triple
(&V1, hpage, xyz.com) asserts that the vendor &V1 (URI omitted
for brevity) has the homepage xyz.com. A collection of triples may
be queried using a “graph pattern”, the fundamental querying con-
struct of SPARQL'®, which is essentially a collection of triples in
which at least one of the Subject, Property or Object is a variable
denoted by a leading ?7’.

Processing Queries with the Relational-style Approach.
Fig.1(a) shows a graph pattern query Q, which retrieves the details
of the product offer and their vendors. The first triple pattern will
match triples whose property is vendor which is essentially a se-
lect operation on the property type. Triple patterns with common
variables imply an implicit join condition. For example, the triple
patterns sharing a common subject variables (e.g., ?s/ in Fig.1(a))
are processed with the multiple joins on the subject fields. Con-
sequently, processing graph pattern queries is accomplished us-
ing a sequence of relational join operations. In MapReduce, all
triple patterns that join on the same variable can be joined in the
same MapReduce cycle. Therefore, a query is executed in a work-
flow whose length is equal to number of join variables. Fig.1(a)
shows the corresponding execution plan processing two star pat-
terns whose subject variables are ?s/, ?s2, which connected with
a common variable, ?s2. Processing each star pattern requires two
separate joins, resulting in two MR cycles, and connecting those
two stars also requires additional join, producing the third MR cy-
cle. Overall, three MR jobs are required.

o http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark
lOSPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query
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Processing Queries with the NTGA-based Approach. The
nested triplegroup model represents RDF data as ‘groups of re-
lated triples’ or triplegroups. A TripleGroup tg is a relation of
triples t1,t2,...tx, whose schema is defined as (S, P, O). Further,
any two triples t;, t; € tg have overlapping components i.e. t;
[col; |1 =tj[col;] where col;, col; refer to subject or object compo-
nent. When all triples agree on their subject (object) values, we call
them Subject (Object) TripleGroups respectively, and they corre-
spond to a star sub graph rooted at the Subject (Object) node.
Note that given an input data file, such a model can be created by
a ‘grouping’ operation on the subject column of a triple relation.
This is achieved by the NTGA operator called TG_GroupBy (yr¢g) »
which produces groups of triples in Tg based on their subject;
for example, tg1 € T'G{vendor,price,hpage} in Fig.1(b) is a Sub-
Ject triplegroup with triples sharing the common subject &O f f1.
Such a grouping operation is restricted to only the property types
involved in a query by prior filter/select operation. When load-
ing triples in 7', such filter operations are made by the NTGA
operator TG_LoadFilter (o) based on properties in stp; and
stp2. Now, each resulting triplegroup can be viewed as a potential
match for any of the star subquery patterns in a query. For exam-
ple, for the query in Fig.1(b) involving 2 star patterns denoted as
stp1 = vendor, price, hpage and stps = label, county, we see that
the triplegroup g1 and tg> “matches” stp; and stpa respectively,
which means that they contain the constituent triples for a match of
those star patterns. Given the set of the triplegroups that result from
the grouping phase, the next step is to ensure that each triplegroup
meets all structural constraints of the subpattern that it is a poten-
tial match for i.e. checking that it is indeed a match in the operator
TG_GroupFilter (yorg). It enforces the structural constraints in
a star subpattern e.g. tg; in Fig.1(b) is a valid match for the set
of properties {vendor, price, hpage} but violates the constraint
{vendor, validF'rom}, which leads to be pruned out. Finally,
the valid matches are “joined” as specified in the graph pattern to
create complete subgraph structures that match the graph pattern
query using the TG_Join (Xpq) operator. Since it is straightfor-
ward to “flatten” a triplegroup to yield an equivalent n-tuple, we
say that triplegroups are content-equivalent to n-tuples (a concept
made precise in [4]). Fig.1(b) shows the same result represented as
an n-tuple.

From the query evaluation perspective, the advantage of NTGA-
based approach is that we are able to compute results for all star
subquery patterns in a single MapReduce cycle since a grouping
operation is implemented as a single MapReduce cycle. This is
much less expensive than the 1 cycle per star join approach that



would be needed for the relational algebra style plans in Pig and
Hive. This has significant advantages in RDF query processing
particularly since multiple star subquery patterns are quite com-
mon. Generally, TripleGroup-based pattern matching for a query
with n star sub patterns are transformed into the MapReduce work-
flow with n MR jobs, e.g., 2 MR jobs for the query in Fig.1(a).
Note that the same query requires (2n — 1) MR jobs when us-
ing the relational-style approach. Another salient point about the
data model is that it allows the concise representation of inter-
mediate results when processing queries involving properties that
are multi-valued e.g a vendor may have several offers, etc. In the
results formed by relational algebra expressions, intermediate re-
sults have some redundancy which adds avoidable I/O and network
transfer costs to overall cost of processing. For example, the triple-
group stp; represents the object values on the hpage of &OffI as
{xyz.com, xyz.org} while n-tuple repeats the predicate homepage,
e.g., (&Off1, hpage, xyz.com, &Off1, hpage, xyz.org).

GPy:
?s type Person .
?s memberOf Univ0.edu .

Rule 1: ?s type %0 . Rule 2: ?s type ?e . Rule 3: ?s type e . Rule 4: ?s ?p ?0.

— — — —
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?s docDegFrom ?x.
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?x pubAuthor ?s .
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?s type Person .

?s worksFor Univ0.edu .

Figure 2: Query expansion using the re-writing rules for
LUBM Q5.

2.1 Answering RDF(S) Ontological Queries on
MapReduce

Given an RDF model and an ontology specification, it is pos-
sible that there are more triples entailed than those explicitly rep-
resented in an RDF model. In order to get complete answers to
queries, we may first compute the closure of the model (all entailed
triples) using reasoning algorithms. However, such techniques sig-
nificantly blow up the size of the model and can be computationally
expensive. Further, when updates are applied to the model, the rea-
soning process must be repeated to compute newly entailed triples.
A different approach is motivated by the fact that given a query
on a model, only a portion of an entailment is required to answer
the query and this can be done at query time. Further, it can be
done using so called “perfect re-writings” based on schema triples
that rewrite such queries to unions of conjunctive queries (UCQs),
which can be executed by relational processing systems. So an im-
portant aspect of query evaluation in this situation is how to eval-
uate such often large unions of conjunctive queries or graph pat-
terns with UNIONs. In relational MapReduce-based frameworks
like Pig and Hive, each branch of a UNION query is executed us-
ing a separate MapReduce job. For example, Fig.2 shows the gen-
eration of a set of schema-related subqueries that retrieve the in-
ferred terms that are related to query @5 in LUBM benchmark''.
Leveraging the rules in [5], we generate subqueries GPi, GPs,
and G Ps from G P, that retrieve all inferred subclass, domain, and
range relationships of Person for a triple pattern with type predi-
cate such as (?s, type, Person). For a triple pattern with any other
predicate such as (2s memberOf Univ0), we generate subqueries to
retrieve all the subproperty relationships of memberOf, e.g., GPy

! 1LUBM Benchmark: http://swat.cse.lehigh.edu/projects/lubm
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from G Py. Those subqueries are grouped with three UNION oper-
ators, e.g., GP1 U GP> U GP3 U GP;, and can be executed using
four individual MapReduce jobs.

As an alternative, more efficient approach can be used, which
rewrites this query using the OPTIONAL (OPT) clauses. This idea
is adapted from the proposal in [3] or multi-query optimization of
SPARQL queries. To apply this here, we can use common subex-
pressions as the root of the query and then have OPT clauses rep-
resent the different alternative patterns for completing the query
pattern. For example, the subquery G P1, GP», and G Ps share the
common triple pattern (?s memberOf Univ0.edu). We can merge
these subqueries into the one using three OPT clauses, e.g., SE-
LECT * WHERE { (?s memberOf Univ0.edu) OPT {(?s type Grad-
Stud)} OPT {(?s docDegFrom ?x)} OPT {(?x pubAuthor ?s)}}.
We can process this merged query with three left outer joins (LOJ)
such as ((GP1 <1 GP2) >1 GP3). This approach requires addi-
tional filters and projections in the end to produce the equivalent
result with the previous approach.

With NTGA, we can interpret those subqueries in a more effi-
cient way. Essentially, we will consider the patterns in the dif-
ferent branches of the UNION operator as the parameter or con-
straints of yora, which enforces star-join structural constraints
against triplegroups as earlier described. For example, we can ex-
tract the set of predicates from each sub query (GP1, GP2, GPs,
G Py) and build the parameter of yora as ({type, memberO f}
V{pubAuthor, memberO f} V{docDegFrom, memberO f})
V{type, worksFor}.

One remaining issue is that the subquery G Ps contains the two
star patterns (i.e., 7s and 7x) , which require additional join opera-
tions to connect them after grouping operation. To avoid the use of
the additional MR job for this join, NTGA flips the triples matching
to (?x pubAuthor ?s) as (?s pubAuthor ?x), which result in revers-
ing the position of the subject and object values. Before producing
the final answer, we flip back the corresponding triples for the cor-
rectness. From these techniques, NTGA maintains the number of
required MR cycles as one regardless of the number of subqueries.
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Figure 3: The architecture and Dataflow of RAPID+.



2.2 Architecture of RAPID+

RAPID+ is an extended Apache Pig system that integrates the
NTGA data model and algebra. Its extensions include support
for expression of graph pattern matching queries either via an in-
tegrated SPARQL query interface using Jena’s ARQ'? or using
NTGA-related high level commands that have been added to the
Pig Latin interface. Fig.3 shows the general flow of processing the
query. Once SPARQL parser parses the query @, our Rule-based
Re-writer expands it using the rules shown in Fig.2. The schema
triple patterns in Q or Qsch(c,p,r,p) are processed by Jena first,
generating the variable mappings for the schema variables. With
these mappings, Schema-aware Rewriter re-writes the remaining
part of the query Q or Qpata(c,D,R,P) €.8., GP1, GP2, GPs3,
and G'P, in Fig.2, generating the union of sub queries, Qunion.
This is fed into the Plan Generator translating the query expres-
sion tree as the logical plan represented with the operators in Pig.
Pig Latin Plan Generator builds the plan with the Pig’s union oper-
ators or L Pyri0n, and this is further optimized by the Logical Plan
Optimizer, converting it as the one with union of left outer joins
LProJ+uUnion for the approach using optional patterns. Similarly,
NTGA Plan Generator produces the plan consisting of NTGA op-
erators, L PgroupBy. All the logical plans are fed into the Logical-
to-Physical Plan Translator, and compiled by the Job Compiler,
producing a workflow of MR jobs in the end. Finally, they are exe-
cuted in the Hadoop cluster and produced the expected output.

2.3 Preliminary Evaluations

Fig. 4(a) shows the preliminary performance evaluation of Union,
LOJ-Union, and NTGA approaches for the 23GB dataset of LUBM
dataset on a 5-node cluster in VCL'?. NTGA shows a performance
gain of 90% over Union approach for LUBM 03, 04, and 05. In
general, the length of the MR workflow using the Union approach
depends on the size of rewritings, and performs the worst among
the three approaches. Fig. 4(b) shows a scalability study with in-
creasing size of the dataset (23GB and 45GB) on the 10-node clus-
ter. With the increasing data size, NTGA scales better with an
increasing performance gain of 36% (23GB) to 55%(45GB) over
LOJ-Union for 04, and 52%(23GB) to 65%(45GB) for Q5 respec-
tively.
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Figure 4: (a) Performance evaluation of the queries (5-node) (b)
Scalability study with increasing size of RDF graphs (10-node).

3. DEMONSTRATION PROPOSAL

The goal of the demonstration is to allow users to explore query
execution plans for processing graph pattern and ontological queries
on MapReduce platforms. Users will be able to analyze the relational-
style algebra plans used in Pig and Hive vs. the NTGA execution
plans. Fig. 5 shows the screenshot presenting the logical plan based

lepache Jena: http://jena.apache.org
13 Virtual Computing Lab in NCSU: http://vel.ncsu.edu
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Input Dataset:  (gsaM; Berlin SPARQL Bench... ¥) ST ey Granh

Input Query: | "Retrieve details of product ... vJ PREFIX bsbm: <http:/n R,

SELECT * WHERE {

?offer bsbm:vendor ?vendor .
7offer bsbm:deliveryDays 7days.
?offer bsbm:product ?product.

"Retrieve details of product offers with high review
ratings = 8"
(Two star-joins and one chain-join between stars)

?review bsbm:reviewFor ?product .

Treview bsbm:ratingl 7ratingl .
FUTER (?ratinnl = Q1

_[ Logical Plan (Pig Latin) T MapReduce Plan (Pig Latin) T Logical Plan (NTGA) T MapReduce

LOSplitOutput

LOLoad -y LOFiter | w LOSplit 1
e (reviewfor)

LOSplitOutput
{ratingly

Figure 5: The screenshot of the demonstration showing the log-
ical plan of the example query.

on the relational-style algebra for the selected query. Example met-
rics (e.g., the number of MapReduce cycles, the size of material-
ized intermediate results in bytes) will be provided for analysis to
assess the impact of the two kinds of algebras and their operators
on MapReduce processing. The demonstration will use a remote
5-node cluster hosted on VCL. In case of limited connectivity in
the demo room, we will alternatively use a local Hadoop cluster.

3.1 Data Set and Queries

One synthetic benchmark and one real-world data set will be
used for demonstration purposes. The LUBM benchmark dataset
contains information about Universities, while Unitprot14 is a real-
world biological dataset containing protein sequence and function
information. In this demonstration, we will use (i) graph pattern
matching queries in SPARQL with varying sub structures (vary-
ing number of joins, varying number of star subpatterns, and vary-
ing selectivity), and (ii) ontological queries with varying size of
inference-based rewritings.
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