Crowdsourcing MapReduce: JSMapReduce

Philipp Langhans
Institute for Informatics, LMU
Oettingenstr. 67
Munich, Germany

philipplgh@googlemail.com

ABSTRACT

JSMapReduce is an implementation of MapReduce which
exploits the computing power available in the computers of
the users of a web platform by giving tasks to the JavaScript
engines of their web browsers. This article describes the im-
plementation of JSMapReduce exploiting HTML 5 features,
the heuristics it uses for distributing tasks to workers, and
reports on an experimental evaluation of JSMapReduce.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel programming;
D.2.11 [Software Architectures]: Patterns

General Terms
Algorithms

Keywords
MapReduce, JavaScript, Crowdsourcing

1. INTRODUCTION

MapReduce [3] has evolved from a proprietary Google pro-
gramming model for data parallel computation of PageRank
[11] to a popular approach for solving data parallelizable
problems with a cluster or grid of computers. In the mean-
time, the applications of MapReduce range from machine
learning [4] to evaluating queries to databases like CouchDB
[1]. Implementations of MapReduce have reached produc-
tive state among others Apache Hadoop [17] or Skynet [7].

Many web platforms are intended for an interactive use:
They deliver data or services upon request of users browsing
through texts such as catalogs, documentation, or data sum-
maries. Such a functioning leaves much computing power
at the users’ side unused because of the latency inherent
to human reactions. JSMapReduce aims at tapping in this
computing power shifting load to the idle processors of web-
site visitors. In the following, potential application areas for
JSMapReduce are looked at in more detail.

E-Learning.

Most E-Learning platforms would be ideal candidates for
deploying JSMapReduce because learning requires time in-
ducing high latencies to user reactions, and because learning

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink

to the author’s site if the Material is used in electronic media.

WWW 2018 Companion, May 13-17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Christoph Wieser
Institute for Informatics, LMU
Oettingenstr. 67
Munich, Germany
c.wieser@Imu.de

253

Frangois Bry
Institute for Informatics, LMU
Oettingenstr. 67
Munich, Germany

bry@Imu.de

analytics, a key feature of today’s E-Learning platforms, are
mostly well amenable to data parallelism. Learning analyt-
ics can be used among others to adapt teaching material to
learners’ profiles. This can be done, e.g., using a clustering
algorithm like K-Means [10]. [12] describes a MapReduce
implementation of K-Means.

Social Network.

Social network analysis heavily relies on linear algebraic
computation like eigenvector computations that are perfect
candidates for data parallel computation using MapReduce.
[14] for example describes an application of MapReduce to
determine social influences in a social network.

E-Commerce.

E-Commerce often exploits the long tail of a market, that
is, benefits from goods sold in small quantities which in turn
requires to adapt the offers to the clients. Recommender
systems used for this purpose by E-Commerce platforms are
often based on algorithms amenable to data parallelism and
MapReduce (see for example [9]) and therefore to JSMapRe-
duce.

GWAP platforms.

Games with a Purpose [16][15] are the initial motivation
for JSMapReduce. We are using several GWAPs for field
research collecting data about artworks with ARTigo' and
about the usage of the Italian language with Metropolitalia®.
Data collected with GWAPs is processed with MapReduce
for building a semantic search index.

1.1 Common Characteristics of the Use Cases

Human activity in the foreground and machine comput-
ing in the background are the key characteristics of the afore
mentioned use cases. More generally, these characteristics
are met on websites with high screen time and low user in-
teraction. Many such websites rely on MapReduce. Most in-
terestingly, in using JSMapReduce the computational power
provided for running MapReduce scales with the number of
users.

1.2 Client-side Technical Requirements

The barriers to participate in calculating JSMapReduce
jobs are low. Basic requirements are a web browser imple-
menting the Web Worker [6] API of HTML 5 [5] enabling

Mttp://wuw.artigo.org
*http://www.metropolitalia.org

multi-threaded JavaScript and an Internet connection. The
Web Worker API allows processing MapReduce jobs in the
background without affecting the functionality of a website
in the foreground. For ensuring high quality of service, users
should have long screen times, that is, stay on a website as
long as possible. Additional software installations or net-
work configurations (e.g., firewall settings) are not needed.

2. RELATED WORK

MapReduce [3] is a programming model for the concurrent
processing of large data sets on clusters or grids. MapRe-
duce has been implemented in several languages. The most
famous implementations are the internal implementation of
Google and its open source adaption Hadoop [17]. MapRe-
duce applications are working on the basis of key/value pairs.
The user of MapReduce provides a Map and a Reduce func-
tion. The application of the Map function on provided data
during a first step yields intermediate data being input to
the Reduce step. The Reduce step calculates the final re-
sult. The Runtime System of MapReduce is responsible for
parallelizing, error handling, scheduling, and load balancing.
One of the strengths of MapReduce is hiding the complexity
of the execution from the user.

BOINC and similar systems also orchestrate PC grids and
in particular allow solving MapReduce jobs [2]. However,
these systems are not web browser-based.

To the best of the authors’ knowledge, there has been no
approach using a grid of web browsers for MapReduce.

A different system also called JSMapreduce® we got aware
of after naming and referring to our system aims at testing
MapReduce in one single web browser. Productive calcula-
tions are not performed on the web browser.

3. JSMAPREDUCE

JSMapReduce adapts MapReduce to the web context.
The User submits MapReduce jobs via a web browser to
the Runtime System, which manages the processing on many
Workers. Each worker is a web browser with a JavaScript
engine, that is displaying for example a website of the men-
tioned application areas in Section 1.

3.1 Challenges in the Web Context

In contrast to the controlled cluster or grid environments
for traditional MapReduce calculations, the web as one fac-
tor and human beings as the other factor cause challenges
for processing MapReduce jobs. In the web context HTTP
1.1 is the only widespread choice for client server communi-
cation for HTML and JavaScript usage. The first challenge
is, that only clients can establish connections to the server
for sending and receiving messages. As a consequence, the
Runtime System of JSMapReduce can act as a managing
instance, only if a client asks for new instructions. There-
fore, decisions on distributing MapReduce tasks (i.e. a sub-
problem of a MapReduce job) to web browsers are based
on uncertainty. Another challenge concerning HTTP is that
the protocol is stateless. Hence, each request of a worker
is treated independently and requires extra management ef-
fort. Uncertainty is also an issue concerning the perspectives
of an efficient and exhaustive processing of MapReduce jobs.
First of all the diversity of workers regarding computational

Shttp://www.jsmapreduce.com

254

power and the quality of the JavaScript engine affect the
efficiency. Secondly the quality of the transmission rates be-
tween workers and the runtime environment for exchanging
jobs and results has a high impact on the performance of
a worker. In fact both the speed of calculations as well as
the quality of the data transfer are crucial for completing
MapReduce jobs successfully. Finally, human beings are a
source of uncertainty. As mentioned above, JSMapReduce
runs successfully if deployed in an environment where the
screen time is long enough to complete the job because leav-
ing a website with JSMapReduce support makes the run
time engine wait for results it will never receive. Running a
grid of web browsers with JSMapReduce means that one has
a dynamic number of workers that are available to perform
tasks, while the whole MapReduce job may have already
started. This means that one has to handle new workers
as well as vanishing workers. Fraud (intended or not) is an
additional challenge in the JSMapReduce approach. Since
we cannot control the clients’ environment, we cannot en-
sure that the results we get were calculated as specified in a
traditional cluster or grid environment.

These above-mentioned kinds of uncertainty require sev-
eral strategies described below. We identified profiles of
workers that can be detected in an early state of process-
ing. These profiles allow a significant optimization during
the execution of MapReduce calculations.

3.2 Architecture of JSMapReduce

Starting a JSMapReduce job means submitting input data
and functions to the JSMapReduce Client, that interacts
with the Runtime System being responsible for coordinat-
ing the JSMapReduce Workers. Solutions of Map or Re-
duce jobs calculated by the JSMapReduce Workers are ag-
gregated by the Runtime System and presented to the user
via the JSMapReduce Client.

JSMapReduce Client.

The JSMapReduce client is the interface for users that
want to process MapReduce jobs. Obviously, the client al-
lows submitting data as well as the Map and the Reduce
function. The client manages the communication with the
Runtime System via a simple protocol. To compensate the
only stateless HT'TP requests, the client can be set to states
like listening.

Runtime System.

The Runtime System, consisting of the three components
Bridge, Master and Scheduler, is responsible for creating,
distributing, monitoring and bundling tasks.

The Bridge is a standalone socket-server receiving com-
mands and MapReduce jobs from users. The bridge reports
on the status of processing, initiates the distribution of data
and actuates preprocessing steps in the master. The Mas-
ter is the core component of the JSMapReduce framework
and communicates with the remaining components to man-
age the processing of a MapReduce job. The master receives
input data from the bridge and preprocesses them. Based
on the preprocessing steps, the master creates tasks (sub-
problems) managed in a database. A task can be immedi-
ately processed or delayed. The master is also responsible for
the registration of new workers. Only workers fulfilling mini-
mal requirements are accepted to prevent management over-
head and abuse. Additionally, the master manages interme-

diate results and aggregates partial results. The Scheduler
supervises each single worker by detecting timeouts (e.g., if
a user left a website) and delivering tasks available in the
database. The scheduler can assign tasks redundantly to
ensure the quality of service.

JSMapReduce Worker.

If a web browser is online on a website with JSMapRe-
duce support, it is called a JSMapReduce worker. Visit-
ing a JSMapReduce website executes JavaScript code in the
background via the HTML 5 Web Worker API and connects
to the Runtime System. Due to the limited stateless HTTP
protocol the server-push technique (COMET [13]) is used to
keep the connection to the Runtime System alive for further
communication. As soon as tasks are available, the worker
receives them. This approach grants enough freedom to the
runtime engine to control the amount of processing on the
worker without busy waiting. Before being sent to the work-
ers, original input data is partitioned into chunks. The size
of a chunk varies according to the identified profile of the
worker. For example, reliable workers with good Internet
connections and fast processors will get the largest chunks.
Chunks are compressed for the transfer.

The strategy for scheduling workers is hybrid. First choice
are workers with high quality rating, afterward quantity re-
places quality, and finally the Runtime System itself is the
last standing worker to process the data chunks until new
workers register, when visiting a JSMapReduce supported
website.

3.3 Evaluation

For the sake of evaluating JSMapReduce, we used the clas-
sic video game Snake in the foreground. The implementation
is based on the new HTML 5 canvas element. When play-
ing Snake, users collect items by controlling a snake with
the keyboard. In the background JSMapReduce tasks are
processed without influencing the highly interactive game.

The 240 website visitors during the evaluation processed
more than 70.000 tasks with a failure rate of 0.25 %. Each
player on average processed 449 MB (uncompressed), play-
ing 2:11 minutes. The data chunks were compressed to a
tenth of their original sizes for transfer. The average trans-
fer rate was 1 GB in 113 seconds. The average processing
time of the chunks was 26 seconds / 1 GB, while the users
stayed for 131 seconds on the website on average. Hence,
more than 1 GB of (uncompressed) data was processed dur-
ing one game session.

As a positive result of a subsequent online-survey, no user
reported effects of the massive calculations in the background
on the game application in the foreground. 21 % complaints
about occasional glitches, the others felt confident. Con-
cerning allowing additional calculations in the background
only 15 % of the users raised doubts but none rejected the
idea.

In our evaluation the server was a bottleneck and caused
overheads of 98 seconds per GB. Optimizing the server is
subject to further research on JSMapReduce. Our tests
showed that the best performance could be obtained with
20 concurrent workers.

A bottleneck that cannot be influenced by software op-
timization of JSMapReduce (in contrast to controlled grid
environments) is the transmission rate between the Runtime
System and workers. This fact makes JSMapReduce suit-

255

able for MapReduce jobs that draw on exploiting the CPU
rather than relying on massive data exchange.

The evaluation proved that the quality of the workers in
terms of Internet connection and processor was of signif-
icant importance in comparison to the quantity of work-
ers. Strategies, based on measurements of response time
and time requirements (see Figures 1 and 2), to preselect
workers of high quality are discussed in [8].

400

300

200

100

500ms 1000ms 1500ms 2000ms

0 ms

Figure 1: The histogram shows that the workers’
response time was on average less than half a second.

200ms

100ms

I
|
i ‘ I
Jd
i HHHH A

Figure 2: Time requirements of the steps Init (blue),
Map (red), Group (green), and Reduce (purple).

4. DEMONSTRATION

The demonstration described in this Section is available as
ascreencast on http://www.pms.ifi.lmu.de/publikationen/
#PMS-FB-2013-1. The classical example for using MapRe-
duce is a logfile analysis. For the sake of demonstrating
JSMapReduce, we generated sample logfiles that should be
transformed to monthly statistics about website visitors. A
basic logfile contains 1 million entries occupying 150 MB
space. The data is provided via a database and also the
Map and the Reduce functions for this demo case are also
provided.

The demo case starts with declaring in the JSMapReduce
Client how to portion the 1 million entries into smaller data

chunks for the workers. We choose data chunks of 2000
lines each and start processing the logfile analyzing job. The
progress of the whole job is visualized by dots arranged in
a box. One dot stands for the status of one data chunk.
White means untreated, blue means in progress, green means
completed, and red means error. The number of concurrent
workers in progress can be determined by the number of blue
dots. At first we demonstrate a JSMapReduce job executed
with only one worker rendering a session of the video game
Snake in the foreground. Obviously this highly interactive
game runs smoothly, while a data chunk is processed in the
background at the same time, although multiple snake up-
dates need to be rendered every second. As a second step
we demonstrate processing data chunks with multiple work-
ers as expected in MapReduce frameworks. Therefore sev-
eral browser games are started at the same time registering
themselves as workers on the Runtime System. When run-
ning the MapReduce job, several blue dots are displayed
at the same time, corresponding to the active workers. As
expected all Snake instances run smoothly.

S. CONCLUSION AND FUTURE WORK

In this paper, we presented an implementation of MapRe-
duce in JavaScript using the web browsers of common web-
site visitors as workers. JSMapReduce was originally con-
ceived for a distributed calculation of an index for the se-
mantic search engine of the GWAP platform ARTigo.

The implementation benefits from the Web Worker API
introduced in HTML 5 allowing multi-threaded processing
of JavaScript programs. We proved that intense process-
ing and transmission of data in the background has no per-
ceptible effect on the web browser interactions in the fore-
ground. This makes JSMapReduce suitable for application
areas needing cheap and scalable computational power with
a growing number of users on their website. The longer the
a user stays on the website, the more MapReduce problems
can be calculated. Despite having evaluated the approach
with a prototypical implementation, the results are promis-
ing in comparison to established MapReduce implementa-
tions such as Hadoop. Subtracting the overhead of the web
transmissions, the performance is similar to the Hadoop im-
plementation of MapReduce as described in [8].

Further work on implementations of the JSMapReduce
approach will benefit from our heuristics to ensure quality
of service the on one hand, mainly by choosing reliable work-
ers in an early stage of processing, and from coping with a
dynamic number of workers on the other hand.

The JSMapReduce approach allows bundling human think-
ing and computational power, therefore upgrading the crowd-
sourcing approach to a higher stage. Having presented our
first JSMapReduce prototype in this paper, many options
for optimization are planned, amongst others analyzing OS
performance, error rates, load balancing, intra-worker per-
formance, performance variations, client-side storage, and
overhead reduction to mention some of them.

Acknowledgements

This research has been funded by the Deutsche Forschungs-
gemeinschaft (DFG) within the Play4Science project num-
ber 578416 (cf. http://www.play4science.org).

256

6. REFERENCES

[1] J. Anderson, J. Lehnardt, and N. Slater. CouchDB:
The Definitive Guide: Time to Relax. O’Reilly, 2010.
[2] F. Costa, L. Silva, and M. Dahlin. Volunteer Cloud
Computing: MapReduce over the Internet. In Intl.
Symp. Parallel € Distributed Processing. IEEE, 2011.
J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In 6th Conf.
Operating Systems Design and Implementation, 2004.
C.-T. C. et al. Map-Reduce for Machine Learning on
Multicore. In Proc. 20th Conf. on Neural Information
Processing Systems, 2006.
R. B. et.al. HTMLS5.
http://www.w3.org/TR/2012/CR-html5-20121217/.
I. Hickson. Worker. http://www.w3.org/TR/workers/.
H. e. a. Jin. The MapReduce Programming Model and
Implementations. Cloud Computing: Principles and
Paradigms, pages 373-390, 2011.
P. Langhans. JSMapReduce - Distributed Computing
with Web Clients and LAMP, Institute of Computer
Science, University of Munich. bachelor thesis, 2012.
H. Liang, J. Hogan, and Y. Xu. Parallel User Profiling
Based on Folksonomy for Large Scaled Recommender
Systems: an Impl. of Cascading MapReduce. In 10th
Intl. Conf. Data Mining. IEEE, Dec 2010.
J. e. a. MacQueen. Some Methods for Classification
and Analysis of Multivariate Observations. In Proc.
5th Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, page 14, 1967.
L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical report, Stanford InfoLab, Nov 1999.
R. Raju, V. Vijayalakshmi, and R. Showmya.
E-Learning Using Mapreduce. Intl. Journal on
Computer Science and Engineering, 3(4), 2011.
A. Russell. Comet: Low Latency Data for the
Browser. http://goo.gl/mXTdI, March 2006.
J. Tang, J. Sun, C. Wang, and Z. Yang. Social
influence analysis in large-scale networks. In Proc. 15th
ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, pages 807-816. ACM, 2009.
L. von Ahn and L. Dabbish. Designing games with a
purpose. Communications of the ACM, 51(8), 2008.
L. von Ahn et.al. Improving Accessibility of the Web
with a Computer Game. In Proc. Conf. on Human
Factors in Computing Systems. ACM, 2006.
[17] T. White. Hadoop: Definitive Guide. O’Reilly, 2012.

3

(10]

(11]

(12]

(13]

(14]

(15]

(16]

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130404054601
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130404054601
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

