
Analyzing the Suitability of Web Applications for a
Single-User to Multi-User Transformation

Matthias Heinrich
SAP AG

matthias.heinrich@sap.com

Franz Lehmann
SAP AG

franz.lehmann@sap.com

Franz Josef Grüneberger
SAP AG

franz.josef.grueneberger@sap.com

Thomas Springer
Dresden University of

Technology
thomas.springer@tu-

dresden.de

Martin Gaedke
Chemnitz University of

Technology
martin.gaedke@cs.tu-

chemnitz.de

ABSTRACT
Multi-user web applications like Google Docs or Etherpad
are crucial to efficiently support collaborative work (e.g.
jointly create texts, graphics, or presentations). Neverthe-
less, enhancing single-user web applications with multi-user
capabilities (i.e. document synchronization and conflict res-
olution) is a time-consuming and intricate task since tra-
ditional approaches adopting concurrency control libraries
(e.g. Apache Wave) require numerous scattered source code
changes. Therefore, we devised the Generic Collaboration
Infrastructure (GCI) [8] that is capable of converting single-
user web applications non-invasively into collaborative ones,
i.e. no source code changes are required. In this paper,
we present a catalog of vital application properties that al-
lows determining if a web application is suitable for a GCI
transformation. On the basis of the introduced catalog, we
analyze 12 single-user web applications and show that 6 are
eligible for a GCI transformation. Moreover, we demon-
strate (1) the transformation of one qualified application,
namely, the prominent text editor TinyMCE, and (2) show-
case the resulting multi-user capabilities. Both demo parts
are illustrated in a dedicated screencast that is available at
http://vsr.informatik.tu-chemnitz.de/demo/TinyMCE/.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; H.5.3 [Information Inter-
faces and Presentation]: Group and Organization Inter-
faces—Computer supported cooperative work, Synchronous

interaction, Web-based interaction

Keywords
Groupware, Shared Editing, Web Applications, Web Engi-
neering

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

1. INTRODUCTION
According to McKinsey’s report“The Social Economy”[6],

the use of social communication and collaboration technolo-
gies within and across enterprises can unlock up to $860
billion in annual savings. Collaborative web applications
represent an essential class from the group of collaboration
technologies that allow multiple users to edit the very same
document simultaneously. In contrast to single-user appli-
cations (e.g. Microsoft Word) which have to rely on tra-
ditional document merging or document locking techniques
in collaboration scenarios, shared editing solutions such as
Google Docs or Etherpad improve collaboration efficiency
due to their advanced multi-user capabilities including real-
time document synchronization and automatic conflict res-
olution.

Even though collaborative web applications have enor-
mous potential allowing to jointly create text documents,
spreadsheets, presentations, source code files, CAD models,
etc., the large majority of web applications available, for ex-
ample, in the Chrome Web Store or the Firefox Marketplace,
offers solely single-user capabilities. The lack of multi-user
facilities stems from the fact that implementing collabora-
tion capabilities is a time-consuming and cumbersome task.
Enhancing single-user web applications with multi-user fea-
tures in a conventional manner requires developers to get
familiar with a concurrency control library (e.g. Apache
Wave [1], ShareJS [7], etc.) as well as with the application’s
source code. Additionally, integrating collaboration capa-
bilities entails a multitude of scattered source code changes
to capture and replay document manipulations. This task is
particularly tedious for mature single-user web applications
like the TinyMCE text editor [5] encompassing more than
70 000 lines of JavaScript code or the SVG-edit graphics ed-
itor [4] surpassing 30 000 lines of JavaScript code.

To ease the integration of collaboration capabilities, Sun
et al. introduced the transparent adaptation approach aim-
ing “to convert existing single-user applications into collabo-
rative ones, without changing the source code of the original
application” [11]. Disburdening developers from modifying
the original source code comes at the cost of having to im-
plement a specific collaboration adapter for each and every
single-user application. This collaboration adapter links the
original application to a reusable collaboration engine en-
abling the synchronization of various document instances.
To speed up the application transformation for single-user

249

Editor

DOM

Editor APIs

DOM APIs GCI GCIHTTP

Editor

DOM

Editor APIs

DOM APIsGCIHTTP

Client ClientServer

Figure 1: Architecture of the GCI [8]

web applications, Heinrich et al. devised the Generic Collab-
oration Infrastructure (GCI) [8] depicted in Figure 1. The
key benefit of the GCI is the application-agnostic change
recording and change replay feature that does not require an
extra collaboration adapter for each application. Providing
a generic collaboration infrastructure becomes possible since
the capture and replay logic exploit standardizedW3C DOM
APIs (e.g. the DOM Core [9] or the DOM Events specifi-
cation [10]) instead of leveraging application-specific editor
APIs (cf. Figure 1). Hence, a large variety of standards-
based web applications can adopt the GCI since they all
share a common technological foundation, namely, the well-
defined Document Object Model (DOM). In contrast to the
transparent adaptation approach, the GCI-based transfor-
mation is more efficient due to the fact that only a specific
GCI configuration file is required instead of a specific col-
laboration adapter implementation.

In [8], the GCI approach was introduced and the tech-
nical foundations were discussed in detail. In this paper,
we analyze 12 single-user web applications from different
application domains (e.g. word and spreadsheet processors,
graphics editors, integrated development environments, etc.)
to check whether they are eligible for the GCI transforma-
tion approach. Therefore, we systematize the GCI eligibility
check by establishing a criteria catalog containing properties
that single-user web applications have to fulfill to adopt the
GCI. Moreover, we demonstrate the transformation process
in detail leveraging the TinyMCE text editor [5].

The main contributions of this paper are three-fold:

• We compile a criteria catalog identifying necessary as
well as critical application properties for the GCI trans-
formation and present approaches to test these criteria.

• We analyze 12 single-user web applications leveraging
the established criteria catalog and show that from 6
eligible applications 4 were successfully transformed to
collaborative editors.

• We walk through the transformation process of the
single-user text editor TinyMCE and demonstrate its
resulting multi-user capabilities.

The rest of this paper is organized as follows: Section 2 ex-
poses essential application properties that qualify for a GCI
transformation and Section 3 discusses the eligibility anal-
ysis of 12 single-user web applications. Afterwards, Section
4 illustrates the exemplary single-user to multi-user trans-
formation using the TinyMCE editor and Section 5 draws
conclusions.

2. APPLICATION CRITERIA CATALOG
To evaluate the suitability of web applications for a GCI

transformation, we compiled a list of necessary and critical

application properties. While necessary application proper-
ties have to be fulfilled in order to allow for a GCI trans-
formation, the non-fulfillment of critical properties does not
exclude applications from the set of convertible applications.
However, these applications may suffer from an impaired
GCI performance or functionality. Furthermore, we describe
approaches to efficiently check whether applications exhibit
or do not exhibit certain properties.

The list of necessary application properties encompasses
(1) the W3C standards compliance and (2) the DOM-based
data model.

W3C standards compliance is required since the doc-
ument change capturing and the document change replay is
built on top of W3C standards (the DOM Core [9] and the
DOM Events [10] recommendation). Conventional plugin
technologies such as Adobe Flash or Microsoft Silverlight do
neither comply with the DOM Events specification nor with
the DOM Core standard. Hence, the record manipulations
process (based on DOM Events) and the replay manipula-
tions process (based on the DOM Core) is bypassed which
disqualifies web applications leveraging plugin technologies.
Testing whether web applications include elements based on
plugin technologies is straightforward. First, deactivating
plugins in the respective browser leads to an incomplete ren-
dering of a plugin-based website. Second, <object> tags in
the HTML source code hint the usage of plugin technolo-
gies since the <object> element marks resources that are
processed by external plugins.

A DOM-based data model represents the second nec-
essary characteristic. Since the DOM is the only standard-
ized representation all modern browsers can process in a
uniform way, it is essential that the data model is accommo-
dated in the DOM. If the data model is not encapsulated in
the DOM, the GCI synchronization mechanism breaks since
standardized DOM APIs can no longer be exploited. Web
applications structured according to the established Model-
View-Controller (MVC) pattern are one example where the
data model is not included in the DOM. In this case, only the
view is represented in the DOM and the model is represented
by a separate JavaScript data structure. The infinite set of
constructible JavaScript data structures doesn’t allow devel-
oping a generic record and replay mechanism and thus, these
applications are not supported by the GCI. An option to dis-
cover the existence of a JavaScript data model are so called
DOM breakpoints provided by the Chrome Developer Tools.
A DOM breakpoint is a marker on a specific DOM node
that notifies about certain node manipulations (e.g. subtree
or attribute modifications). Once a DOM breakpoint is hit,
the debugger jumps to the JavaScript code that was trigger-
ing the DOM node manipulation. Since changes to the view
(represented in the DOM) commonly entail model changes,
these DOM breakpoints can reveal where the data model
resides.

Besides necessary application properties, there are the
critical application properties: (1) model isolation, (2) DOM
event frequency and (3) multi-user ready identification.

Model isolation is a critical application property en-
abling the seamless sync of the data model. In contrast to
the data model, view-related aspects like toolbar selections,
window size, scrolling position, etc., should not be synchro-

250

nized since these characteristics are individual to each vir-
tual workspace. Nevertheless, web applications do not al-
ways strictly separate data model and view-related aspects
in distinct DOM subtrees which impairs the GCI sync that
operates on selected DOM subtrees [8]. Hence, if data model
and view aspects are intermingled in the same DOM sub-
tree, the sync incorrectly includes view elements. Analyzing
if the data model is isolated can be accomplished using the
DOM element inspector that is, for example, available in
the Chrome Developer Tools. The DOM inspector allows
selecting an element in the rendered website which triggers
showing the associated DOM subtree. Selecting the editing
pane of a text editor or the canvas of a graphics editor high-
lights the respective DOM subtrees and allows investigating
linked child elements. This test is an efficient means to check
if the data model is clearly separated from the view.

The DOM event frequency is critical with respect to
the GCI performance. Currently, the DOM mutation event
rate should not surpass multiple hundreds of events a second
since this is the upper limit the latest GCI implementation
is able to process. For example, these situations may arise
carrying out drag-and-drop operations in graphics editors
whereas the dragged object (e.g. a circle shape) changes its
x and y coordinates hundreds of times a second. Another
example are group operations where dozens or hundreds of
DOM nodes are affected, e.g. a cut-and-paste operation in-
volving numerous pages in a text document. The magnitude
of these high-load scenarios can be measured attaching a
JavaScript event listener (e.g. node.addEventListener(. . .))
to a specific DOM subtree whereas the listener logic com-
putes the events-per-second rate.

Multi-user ready identification is the last critical ap-
plication property we identified. Web applications that were
not meant to be used in multi-user scenarios may adopt
a simple naming scheme for referencing document artifacts
that breaks when linking various application instances. For
example, the graphics editor SVG-edit references created
shapes using an incremented integer. If two users simulta-
neously construct a new shape in different workspaces, both
shapes receive the very same integer ID leading to an incor-
rect application behavior. Identifying the applied identifi-
cation scheme can be achieved in an interactive debugging
session where a DOM breakpoint is installed on the data
model root node and new model objects are created which
leads to the logic that assigns IDs to created objects.

3. APPLICATION ELIGIBILITY TEST
Taking into account the necessary and critical application

properties, we analyzed a set of 12 single-user web editors
that are listed in Table 1. Thereby, we selected solely open-
source applications that are widespread and also adopted by
a large community. The selection process also ensured that
the applications cover a multitude of domains (e.g. text
editing, source code editing, etc.). Conducting the analysis,
we tested applications with respect to the compiled criteria
catalog (cf. Section 2) excluding the DOM event frequency
property since an adequate test would require excessive and
time-consuming editor usage in a variety of scenarios due to
the fact that DOM event rate peaks can occur carrying out a
multitude of differing editor operations (e.g. copy-and-paste
operations affecting numerous DOM nodes). If one of the
two necessary properties was not met, we omitted the test
addressing critical application properties.

Table 1: Results of the Application Eligibility Test

Figure 2: Screenshot of the TinyMCE Editor [5]

Ultimately, 6 editors (marked bold) from the set of 12
satisfy the necessary application properties and hence are
eligible for a GCI transformation. Note that 50 percent of
the analyzed applications expose an external data model
which shows the large adoption of the MVC pattern in the
web application ecosystem. The notion of structuring ap-
plications according to the MVC principle is promoted by
numerous web application frameworks (e.g. Knockout or
Backbone.js) that enforce applications to be divided into
model, view and controller components. Nevertheless, the
analysis shows that the GCI is a viable option for numerous
applications from multiple domains.

From the set of 6 eligible editors, we converted 4 appli-
cations (CKEditor [2], jQuerySheet [3], SVG-edit [4] and
TinyMCE [5]) and adopted the resulting collaborative coun-
terparts in real-life collaborative scenarios. While the multi-
user versions of the CKEditor and the SVG-edit were ex-
ploited in an extensive user study with 30 participants show-
ing that transformed editors decently support collaborative
work [8], the converted jQuerySheet editor was used for an
internal project. The fourth editor, TinyMCE, was enriched
with multi-user capabilities in preparation for the demo de-
scribed in Section 4.

4. DEMO
In this section, we introduce the popular TinyMCE text

editor [5] and demonstrate its single-user to multi-user trans-
formation as well as the resulting multi-user capabilities.

The TinyMCE word processor is a prominent single-user
web application depicted in Figure 2. The editor offers com-
mon rich text operations such as creating and formatting
text documents as well as inserting tables, hyperlinks, im-

251

Check Necessary

Criteria

Check Critical

Criteria

Select DOM

Sync Tree

Complete GCI

Configuration

Test Multi-User

Capabilities

Criteria

Satisfied?

Test

Successful?

Yes Yes

No
No

Unsuccessful

Application

Transformation

Successful

Application

Transformation

1 2 3

x Process Steps illustrated in the Demo

Figure 3: Overview of the Single-User to Multi-User
Transformation Process

ages, videos, etc. The open-source project encompassing
70 000 lines of JavaScript code represents a widely-adopted
text editor that already surpassed 350 000 downloads of its
current version 3.5. Even though TinyMCE could be ex-
ploited for a variety of multi-user use cases (e.g. collabo-
ratively writing scientific publications or project proposals),
the text editor does not yet offer shared editing capabilities.

In essence, transforming the TinyMCE editor requires go-
ing through the entire single-user to multi-user transforma-
tion process depicted in Figure 3. Since our application
eligibility analysis showed that TinyMCE meets all neces-
sary and critical application properties (cf. Table 1), our
demo focuses on the three remaining steps, i.e. (1) the
DOM sync tree selection, (2) the GCI configuration and
(3) the demonstration of injected multi-user capabilities.
This GCI demo is also captured in a screencast available at
http://vsr.informatik.tu-chemnitz.de/demo/TinyMCE/.

The DOM sync tree selection represents demo step (1).
Note that synchronizing the entire DOM would confuse par-
ticipants in a collaborative editing session since individual
editor aspects like selecting a tool in the editor’s toolbar
would also be synchronized among all participants which
is not the desired behavior. To ensure that only the edi-
tor’s document is synchronized, the specific DOM subtree
accommodating the document has to be defined in the GCI
configuration. Hence, we start the demo launching the un-
changed current release version of the TinyMCE and use
the DOM Inspector, which is part of the Chrome Developer
Tools, to mark the editing pane in the rendered TinyMCE
web page. Marking the rectangular editing pane highlights
the respective subtree in the tree representation of the DOM.
Thus, we can identify the root node ID of the DOM subtree
encompassing the editor document.

In demo step (2), we use a text editor to complete the GCI
configuration in the gci-config.js file. First, we specify the
DOM sync tree in the GCI configuration entering the DOM
node ID that was determined in demo step (1). Moreover,
we complete the GCI host name setting in the gci-config.js.
These two settings are the only required GCI configuration
properties. The last activity of demo step (2) is the embed-
ment of the gci.js script in TinyMCE’s main HTML page.
The gci.js script encapsulates all logic that allows capturing,
distributing and replaying DOM manipulations.

Demo step (3) concludes the TinyMCE transformation il-
lustrating the injected multi-user capabilities. Therefore,
we first launch the Tomcat-based GCI server and various
Chrome browser instances. Afterwards, we open the URL
of the TinyMCE in each browser instance and start work-
ing collaboratively. This collaborative editing session ranges
from basic text operations such as enter, change or delete
text to advanced rich text operations such as embed images,

create tables, change font size or font face. Moreover, we
invite other participants to join the collaborative session to
illustrate the GCI capabilities in terms of sync speed and
conflict resolution.

5. CONCLUSIONS
The generic collaboration infrastructure represents a ca-

pable means to transform existing single-user web applica-
tions into collaborative ones with minimal effort. Thereby,
DOM APIs are exploited to capture and replay DOM ma-
nipulations in an application-agnostic fashion. Nevertheless,
not all standards-based web applications are eligible for a
GCI transformation. Therefore, we exposed necessary and
critical application properties that allow assessing whether
a web application may or may not adopt the GCI transfor-
mation approach. Moreover, we showed how necessary and
critical criteria can be tested. To exhibit the simplicity of
the GCI transformation process, we showcased the trans-
formation procedure using the widely-adopted text editor
TinyMCE and eventually demonstrated the resulting multi-
user capabilities.

6. ACKNOWLEDGMENTS
This work was partially supported by funds from the Eu-

ropean Commission (project OMELETTE, contract number
257635).

7. REFERENCES
[1] Apache Wave. The Apache Software Foundation.

http://incubator.apache.org/wave/, 2013.

[2] CKEditor. http://ckeditor.com/, 2013.

[3] jQuery.sheet - The Web-Based Spreadsheet.
http://code.google.com/p/jquerysheet/, 2013.

[4] SVG-edit – A Complete Vector Graphics Editor in the
Browser. http://code.google.com/p/svg-edit/,
2013.

[5] TinyMCE – Home. Moxiecode Systems AB.
http://www.tinymce.com/, 2013.

[6] M. Chui, J. Manyika, J. Bughin, R. Dobbs,
C. Roxburgh, H. Sarrazin, G. Sands, and
M. Westergren. The Social Economy: Unlocking Value

and Productivity through Social Technologies.
McKinsey Global Institute, 2012.

[7] J. Gentle. ShareJS - Live Concurrent Editing in your
App. http://sharejs.org/, 2013.

[8] M. Heinrich, F. Lehmann, T. Springer, and
M. Gaedke. Exploiting Single-User Web Applications
for Shared Editing - A Generic Transformation
Approach. In WWW, pages 1057–1066, 2012.

[9] A. L. Hors and P. L. HÃl’garet. Document Object
Model (DOM) Level 3 Core Specification.
http://www.w3.org/TR/DOM-Level-3-Core/, 2004.

[10] D. Schepers and J. Rossi. Document Object Model
(DOM) Level 3 Events Specification.
http://www.w3.org/TR/DOM-Level-3-Events/, 2011.

[11] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai.
Transparent Adaptation of Single-User Applications
for Multi-User Real-Time Collaboration. ACM Trans.

Comput.-Hum. Interact., 13:531–582, 2006.

252

