
Automated Exploration and Analysis of Ajax Web
Applications with WebMole

Gabriel Le Breton
Université du Québec à
Chicoutimi, Canada

gabriel.le-
breton@uqac.ca

Fabien Maronnaud
Université du Québec à
Chicoutimi, Canada

fabien.maronnaud@uqac.ca

Sylvain Hallé
Université du Québec à
Chicoutimi, Canada
shalle@acm.org

ABSTRACT
WebMole is a browser-based tool that automatically and ex-
haustively explores all pages inside a web application. Con-
trarily to classical web crawlers, which only explore pages
accessible through regular <a> anchors, WebMole can find its
way through Ajax applications that use JavaScript-triggered
links, and handles state changes that do not involve a page
reload. User-defined functions called oracles can be used to
bound the range of pages explored by WebMole to specific
parts of an application, as well as to evaluate Boolean test
conditions on all visited pages. Overall, WebMole can prove
a more flexible alternative to automated testing suites such
as Selenium WebDriver.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
monitors; H.3.5 [Information Storage and Retrieval]:
Online Information Services—web-based services

General Terms
Theory, verification

Keywords
Web applications, reverse engineering, navigation

1. CRAWLINGWEB 2.0 APPLICATIONS
Modern-day web applications are formed of an intricate

network of code-generated pages, whose interactions are of-
ten subtle and difficult to debug. As a web browser provides
only weak means of enforcing specific navigation sequences,
some pages may be accessed through paths unforeseen by the
application developer, possibly introducing security threats.
Moreover, since the application’s display is dynamically gen-
erated based on the history of past requests, it becomes
hard to verify that some conditions (such as the layout of
elements) hold for all reachable pages.

The systematic exploration of a web application for test-
ing purposes can therefore prove a crucial help to application
developers. Crawling the application offers the possibility
to generate a “navigation map” that can be used to quickly
identify and resolve navigation issues, as has been shown

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW’13, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

in [6]. Moreover, one can take advantage of such an exhaus-
tive exploration to automatically run a variety of tests on
the contents of each page as it is visited, thereby sparing the
developer from tedious and time-consuming manual verifica-
tions.

1.1 Related Work
Unfortunately, current testing tools have not kept up with

the increasing complexity of web applications, and offer few
in the way of systematically exploring its network of pages
automatically. Traditional crawlers such as Heritrix or Nutch
may mine a web application to fetch its list of pages, but
none of them maintains a graph of links usable for debug-
ging navigation problems.

Other tools, such as WAFA [1] and WANDA [2] work on
the server side and can be classified as trace mining tools:
they record information about page calls made by visitors
by instrumenting the application’s source code, and process
this log a posteriori. VeriWeb [3], while not being labelled
a “crawler”, explores interactive web sites using a special
browser that systematically explores all paths up to a spec-
ified depth; SiteHopper [5] also takes into account the pa-
rameters inside the URLs. None of these tools interact with
the client-side GUI to trigger JavaScript events; they in-
stead directly work at the HTTP request level. Therefore,
all events are amalgamated into a single page until the next
page reload. This makes these tools unable to properly ex-
plore and analyze even the simplest Web 2.0 application.

On the contrary, Selenium WebDriver1 is a collection of
language specific bindings to drive a browser, including client-
based, GUI-triggered JavaScript code. However, it does
not perform an automated exploration of a web application,
but merely provides facilities to interact with the browser.
Therefore, most solutions based on Selenium consist of elab-
orate, yet static testing scripts that are simply played back
at intervals.

Closer to our needs is a tool called WebMate [4], which,
however, has yet to be publicly released at the time of this
writing. WebMate claims to systematically explore an ap-
plication to extract its “usage graph”. However, the tool is
geared towards the discovery cross-browser incompatibilities,
and apparently cannot be used to run arbitrary, user-defined
tests as an application is being explored.

1.2 Contributions
To address the issues mentioned above, we developed Web-

Mole, an automated crawler and tester for web applications

1http://seleniumhq.org/

245

that implements a number of novel features. First, WebMole
handles JavaScript applications seamlessly. Links between
pages are not restricted to standard <a> anchors; WebMole
clicks on all elements of a page to look for a change of state.
Moreover, the state of an application is not defined by the
URL of the current page, but rather by the shape of its
DOM tree; WebMole therefore properly recognizes changes
in a page caused by Ajax requests that do not reload a page.

Second, WebMole provides a wider range of exploration
and testing capabilities than existing tools. For example,
upon visiting each new state of the application, WebMole
can be told to evaluate a user-supplied function called a test

oracle. The test oracle can be made of any valid JavaScript
code, refer to the DOM tree of the current page, and even
compare contents of the current page with elements recorded
from past calls to the function. In addition, the exhaustive
exploration of an application can be bounded through a va-
riety of configurable parameters, including a second kind
of user-defined function called a stop oracle. Finally, Web-
Mole is publicly available right away under an open source
license.2

To the best of our knowledge, WebMole is the first tool
that allows the systematic exploration of Ajax-based web
applications, and the automated testing of very expressive,
user-configurable conditions. This combination of features
makes it unique among current web testing software.

2. A MODEL OF STATE EXPLORATION
A the heart of WebMole is an algorithm for systemati-

cally exploring the contents of a web application automati-
cally. Although slightly more complex than a regular graph
discovery algorithm, WebMole’s exploration strategy makes
sure that the whole application is eventually explored, while
at the same time never requiring to go back to a previous
page; rather, WebMole prefers to reset the application to its
initial page and move forward to an unexplored page. This
avoids reverting the application to a past state (akin to us-
ing the browser’s “Back” button), with the undesirable side
effects that such a backtracking could produce. This feature
is unique to WebMole.

2.1 Web State Machines
At the lowest level of this model are DOM nodes, each of

which is formally defined as a function ν : P → V , where P

is a set of parameter names and V is a set of values. The pos-
sible parameters and values for DOM nodes are those speci-
fied in the W3C Document Object Model Level 2. A DOM
tree is a tree whose nodes are DOM nodes. A DOM path

is a slash-separated sequence of node names indicating the
location of a given node in a tree structure; for example, the
path body[1]/p[3]/i[1] designates the first <i> element
within the third <p> inside a document’s (only) <body>.

WebMole’s algorithm progressively builds a data structure
called a Web State Machine (WSM), which can be seen as
a graph connecting all possible states of the application ac-
cording to links found in a page. Formally, a WSM is a
directed graph G = 〈V, E, δ, v0〉, where its vertices V are
DOM trees, its edges E are DOM paths, and the function
δ : V × E → V is such that δ(v, e) = v′ if in DOM tree v,
clicking on the element in path e results in the DOM tree v′.

2http://github.com/GabLeRoux/WebMole.

function explore(v)
while some node e has not been clicked in v

v′ := click(v, e)
if v′ = v then continue
add v′ to V (if not present)
add e to E (if not present)
add (v, e, v′) to δ
if v′ is not completely explored then

explore(v′)
end if

exit function
end while

mark v as completely explored
end function

function main

add v0 to V

while some tree v ∈ V is not completely explored

goto(v)

explore(v)

end while

end function

Table 1: The exploration algorithm in WebMole.

The starting point of an exploration is singled out as DOM
node v0.

As one can see, the WSM uses DOM contents to detect
changes of state in an application, rather than page URLs.
Therefore, state changes that do not result in a new page
being loaded by the browser are still regarded as two nodes
despite the page URL remaining the same. This is crucial for
a proper handling of Ajax applications, and is a departure
from the representation used by most web crawlers. In the
same way, links between pages are represented by the path
to some node in a DOM tree; therefore any piece of a page,
including elements with some click handlers registered, can
be modelled as a potential link. This again differs from most
tools where links must be static <a> anchors.

The exploration algorithm, shown in Table 1, describes
how WebMole crawls an application from a given start page
v0. In a given page v, the algorithm first finds a DOM node
that has not yet been clicked. That element is then “clicked”,
marked as such, and the resulting page v′ is compared to v;
if the DOM tree is the same, the algorithm loops to the next
unclicked DOM node. On the contrary, if the page contents
have changed, the algorithm adds v′ to the set of vertices,
then adds the path to element e to the set of edges, and the
pair (v, e, v′) to the transition function δ. If the resulting
page has not yet been completely explored, the algorithm
then starts over by exploring v′. When no edge remains
unclicked in a page, it is marked as completely explored and
the process ends.

It shall be noted that the exploration finishes as soon as a
page is completely explored; that is, the algorithm, although
recursive, always moves forward and never backtracks to the
last processed page to resume its exploration from there. To
ensure that the application is still exhaustively explored, the
algorithm repeatedly calls explore as long as some vertex v

has not been completely explored. Each time, the algorithm
restarts from the application’s initial page v0, clicks on the
proper elements until v is reached, and then calls explore(v).

2.2 Oracles
The unbridled exploration of a web application, although

automatic, can amount to fetching a very large amount of

246

pages. For example, in the case of an online store where
pages can be dynamically generated based on inventory, the
previous algorithm would ultimately process the entire con-
tents of the store’s database. Moreover, the previous algo-
rithm still does not provide facilities for automatically test-
ing conditions on visited pages.

A second unique feature of our tool is that it provides
facilities to bound the set of reachable pages and provide
diagnostics through a mechanism called oracles. Formally,
an oracle is any function ω : V → {⊤, ⊥}, that takes as
input a DOM tree and returns either true (⊤) or false (⊥).

The first type of oracle is the stop oracle. When a stop
oracle evaluates to true on a given page, the algorithm does
not analyze that page and behaves as if it encountered a dead
end. The once oracle works like the stop oracle, except it
allows to evaluate to true exactly once before behaving like
the stop oracle. Using stop and once oracles can be used to
circumscribe the scope of an exploration.

Oracles can also be used to perform runtime testing of a
web application —that is, evaluation of some conditions on-
the-fly, as the application is being explored. A test oracle

is a Boolean condition on the contents of a page, where the
value ⊥ is by convention the indication of an error.

3. DEMONSTRATION
To illustrate how WebMole can be used to automatically

explore and test an application, we shall show how to use
it on a web site making use of Ajax. WebMole itself is a
JavaScript application that runs in any browser; it does not
require any specific plugin and is not tied to any rendering
engine.

Figure 1 shows the main interface for WebMole. A user
summons the main page, and provides the URL of the start
page to start the exploration from. To perform an exhaus-
tive exploration of an application, no other information is
required from the user.

As the application is being explored, the left pane shows
the list of pages accessed by WebMole (in the order they are
processed); a different icon distinguishes between pages ac-
cessed through static anchors, Ajax calls or internal JavaScript
handlers. The right pane is itself an iframe showing the cur-
rent page from the application that is being processed.

When the exploration of the application is automatic (the
default), the pages in the right pane scroll in rapid succes-
sion. However, the user has the choice of switching to a
manual mode, where the right pane becomes unlocked and
users have the choice of clicking on any elements they wish.
In manual mode, WebMole still records the elements clicked,
builds its WSM in memory and evaluates all oracles, but the
exploration of the pages is driven by the user.

It shall be noted that WebMole interprets neither the
HTML contents of pages received from a server, nor the
JavaScript code that these pages may include. Rather, Web-
Mole uses the host browser’s own engine to render this con-
tent in an iframe, and directly queries the DOM tree result-
ing from that process. This both simplifies the implementa-
tion of the tool, and makes it see pages exactly as the host
browser renders them to a user.

Onece the exploration is over, the WSM can be saved
to a file in JSON format for later processing. It has been
shown, for example, that model checkers can be run on such
a graph to verify complex navigational constraints based on
temporal logic, and that the same graph can also be used at

Figure 2: Selecting the DOM attributes to record

in the WSM

runtime as a guard to prevent a user from veering outside
of some predefined navigation graph [6]. However, since
a DOM tree is a large data structure, and that a WSM
is made of a large number of such trees, one can choose
what attributes, among all the available defined in the DOM,
should be kept by WebMole. For example, if one only wishes
to analyze the positioning of elements inside a page, only the
style.left and style.top attributes of each element can
be saved, and all other remaining information be discarded.
Figure 2 shows how the user can choose the DOM attributes
to be kept in the WSM in WebMole.

Adding oracles to WebMole can be done easily using its
user interface. For example, if one does not want to explore
pages containing shopping cart information, one can write
a stop oracle such as:

f = function(doc) {
if (doc.getElementById("cart") == undefined)

return false;
return true;

}

This oracle will make WebMole stop exploring some branch
as soon as it encounters a page containing a <div> with id

“cart”. Similarly, if one wants to explore only one product
page (assuming all such pages are similar with respect to
some test), one can write a once oracle like the following:

f = function(doc) {
var e = doc.getElementsByTagName("h1")[0];
if (e.value.indexOf("for product") == -1)

return true;
return false;

}

This time, WebMole will process (and run tests on) all pages
whose title does not contain the substring “for product”, and
also on the first encountered page containing that substring.
The end result is that only one product page will be ana-
lyzed, and all the remaining ones skipped.

More importantly, oracles can also be used to perform
runtime testing of a web application —that is, evaluation
of some conditions on-the-fly, as the application is being
explored by WebMole. One particular use of such an oracle
is to detect disruptions in the layout of an application. For
example, one may make sure that the page’s main contents
is always the same width by writing the following test oracle:

f = function(doc) {
var e = doc.getElementById("contents");
if (e.style.width == ’960px’)

return true;
return false;

}

247

Figure 1: The main interface for WebMole.

Oracles turn out to be a powerful testing feature. Indeed,
since an oracle in WebMole is a standard JavaScript func-
tion, it can hence contain static variables. This allows an
oracle to retain information on past calls and compare it to
the state of the current page. For example, the following or-
acle has a static variable f.lastx that can be used to record
the x-position of the menu in a page. The oracle returns ⊥
when the top menu in a page has shifted with respect to its
position in the last visited page.

f = function(doc) {
var e = doc.getElementById("menu");
if (f.lastx != undefined && e.style.left != f.lastx) {

return false;
}
f.lastx = e.style.left;
return true;

}

Oracles with static variables can also be used to detect
navigation issues within the application. For example, a
user should not be allowed to create a shopping cart before
logging in first. This can be verified by writing the following
oracle:

f = function(doc) {
var e = doc.getElementById("h1");
if (e.text().indexOf("Welcome,") == -1)

f.loggedin = true;
return f.loggedin == true ||

doc.getElementById("cart") == undefined;
}

4. CONCLUSION
Initial testing of WebMole on real-world applications shows

that it can prove a powerful tool for the automated crawl-
ing and testing of Web 2.0 applications. As the previous
examples have shown, complex user-defined oracles can be
written to guide the exploration of the tool and perform
elaborate testing on pages; the use of static variables even
allows the tool to evaluate conditions that correlated many
pages along some path.

Following these promising results, we are now integrating
into WebMole functionalities that have already been devel-
oped in our previous tool called SiteHopper. These include

the handling of input forms, parameterized pages. More-
over, additional functions that are currently being imple-
mented include the handling of other user events in addition
to mouse clicks and support for jQuery inside the oracles. In
time, WebMole can prove a more flexible alternative to au-
tomated testing suites such as Selenium WebDriver.

5. ACKNOWLEDGEMENTS
This work was supported by the Natural Sciences and

Engineering Research Council of Canada and by the Fonds
de recherche Québec – Nature et technologies.

6. REFERENCES
[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. WAFA:

Fine-grained dynamic analysis of web applications. In
WSE, pages 141–150. IEEE Computer Society, 2009.

[2] G. Antoniol, M. D. Penta, and M. Zazzara.
Understanding web applications through dynamic
analysis. In IWPC, pages 120–131. IEEE Computer
Society, 2004.

[3] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb:
Automatically testing dynamic web sites. In World

Wide Web Conference Series, 2002.

[4] V. Dallmeier, M. Burger, T. Orth, and A. Zeller.
WebMate: Generating test cases for web 2.0. In
D. Winkler, S. Biffl, and J. Bergsmann, editors, SWQD,
volume 133 of Lecture Notes in Business Information

Processing, pages 55–69. Springer, 2013.

[5] G. Demarty, F. Maronnaud, G. Le Breton, and S. Hallé.
SiteHopper: Abstracting navigation state machines for
the efficient verification of web applications. In
N. Lohmann and M. H. ter Beek, editors, WS-FM,
volume 7843 of Lecture Notes in Computer Science,
pages 103–117. Springer, 2013.

[6] S. Hallé, T. Ettema, C. Bunch, and T. Bultan.
Eliminating navigation errors in web applications via
model checking and runtime enforcement of navigation
state machines. In ASE, pages 235–244. ACM, 2010.

248

