
Live Migration of JavaScript Web Apps

James Lo
Department of Computer

Science
University of British Columbia

Vancouver, Canada
tklo@cs.ubc.ca

Eric Wohlstadter
Department of Computer

Science
University of British Columbia

Vancouver, Canada
wohlstad@cs.ubc.ca

Ali Mesbah
Department of Electrical and

Computer Engineering
University of British Columbia

Vancouver, Canada
amesbah@ece.ubc.ca

ABSTRACT
Due to the increasing complexity of web applications and
emerging HTML5 standards, a large amount of runtime state
is created and managed in the user’s browser. While such
complexity is desirable for user experience, it makes it hard
for developers to implement mechanisms that provide users
ubiquitous access to the data they create during application
use. This work showcases Imagen, our implemented plat-
form for browser session migration of JavaScript-based web
applications. Session migration is the act of transferring a
session between browsers at runtime. Without burden to
developers, Imagen allows users to create a snapshot im-
age that captures the runtime state needed to resume the
session elsewhere. Our approach works completely in the
JavaScript layer and we demonstrate that snapshots can be
transferred between different browser vendors and hardware
devices. The demo will illustrate our system’s performance
and interoperability using two HTML5 apps, four different
browsers and three different devices.

Categories and Subject Descriptors
D.3.2 [Software]: Programming Languages—JavaScript ; E.2
[Data]: Data Storage Representations—Object Representa-
tion

Keywords
JavaScript, session migration, HTML5, JSON, DOM

1. INTRODUCTION
With the evolution of web technologies, browsers, and

HTML5 [3] a great deal of application state is being offloaded
to the client-side. In order to achieve more responsive apps,
JavaScript is increasingly used to incrementally mutate the
Document Object Model (DOM) in the browser to repre-
sent a state change, without requiring a URL change. Addi-
tionally, with new HTML5 APIs apps can feature advanced
graphics, animation, audio, and video. Therefore, capturing
and migrating a particular state of an app is not as simple as
saving and loading a URL any longer. It requires develop-
ers to manually implement code for persisting the transient
browser state (i.e. state that normally would be lost once a
user closes a browser tab).

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13-17, 2013, Rio de Janeiro, Brazil
ACM 978-1-4503-2038-2/13/05.

While some libraries and APIs [2, 8] provide basic support
for object persistence, developers are still obliged to register
and track individual objects programmatically, which can
be tedious and error-prone. Since persistence is well-known
to be a crosscutting concern [9, 10], adding it to existing
code is difficult because it requires changes scattered across
various modules.

In this paper, we investigate the use of session migra-
tion to address this problem. Session migration is the act
of transferring a session between browsers, possibly on dif-
ferent platforms, at runtime. We demonstrate a novel tech-
nique and tool, called Imagen,1 for migrating client-side ses-
sion state of web apps across different browsers and devices,
which is publicly available. Our technique enables end-users
to seamlessly capture the runtime client-side browser state
at a desired instance, and later restore that state in a differ-
ent browser and continue using the app from there. While
there is some previous work on Web app migration [1], that
system only supports persistence of simple objects, and not
full applications which include Javascript function closures,
event-handlers, and HTML5 media objects. Thus that work
is not applicable to the applications that we showcase in this
demo.

Imagen works through a combination of novel JavaScript
transformations. Such transformations can be applied in two
different ways: developer-initiated or user-initiated. The
developer-initiated transformation is applied by a software
developer to their code prior to application deployment. Al-
ternatively, end-users can enable the transformation them-
selves by using a provided transformation HTTP proxy. Ei-
ther way, no extra coding is required to achieve migration
of sessions.

We will demonstrate both options in our demo. To the
best of our knowledge, Imagen is the first tool to support
client-side session migration of Javascript/HTML5 apps with-
out requiring modifications to a web browser or operating
system. An online video provides a demonstration of Ima-
gen and the type of application migration that will be shown
in the live demo.2

2. IMAGEN DESIGN
We present an overview of some challenges in session mi-

gration (Section 2.1), followed by a high-level architectural
overview of the components involved in our approach (Sec-
tion 2.2).

1Imagen means image in Spanish.
2http://www.cs.ubc.ca/~wohlstad/imagenVideo.html

241



1 // Attempt (and fail) to serialize the
2 //user’s session by JSONizing ’window ’
3 var snapshot = JSON.stringify(window);
4
5 // Attempt (and fail) to unserialize a
6 //user’s session by assigning
7 // parsed string to ’window ’
8 window = JSON.parse(snapshot);

Listing 1: Essence of Snapshot Imaging. This code
fails horribly on regular apps but becomes possible
using Imagen.

2.1 Challenges
In order to explain the technical challenges for session

migration, we illustrate using an incorrect strawman im-
plementation of saving/loading a snapshot image of some
browser session (shown in Listing 1). In JavaScript, the
global variable window provides a context from which both
native browser APIs (such as the DOM) and application-
specific state (in the form of JavaScript objects) can be
accessed by programmers. JSON [5] is the popular seri-
alization format of JavaScript and can be used to serial-
ize (JSON.stringify) and unserialize objects (JSON.parse).
Thus it would seem reasonable that to migrate a user’s ses-
sion, one might be able to simply stringify the whole win-

dow object (line 3). Ideally, this would return a string cap-
turing all runtime state needed for migration. Then later,
on another browser, the stringified snapshot could be parsed
back into window (line 8) and the user’s session would re-
sume. Unfortunately, this will not work in practice.

Capturing a snapshot for migration is much more chal-
lenging, for a number of reasons:

1. Function Closures. In addition to objects, JavaScript
state includes function instances called function clo-
sures. This kind of function/object hybrid is not easy
to serialize.

2. Event-handler state. Event-handlers are the driving
force of execution in JavaScript. They create a sched-
ule of activity that is not supported by existing serial-
ization mechanisms.

3. HTML5 rich-media objects. Modern web applications
make use of rich-media objects from the HTML5 stan-
dard which have unique serialization requirements.

All of these problems need to be solved without intro-
ducing burden on the developer or end-user, in particular
Imagen is designed to be:

1. Generic and Interoperable: End users should be able to
migrate a variety of apps and should have the freedom
to use a snapshot in any device of their choice.

2. Automatic: Enabling session migration should not re-
quire additional coding for developers and only minor
setup configuration.

3. Efficient and Scalable: End users should experience
the same level of interactivity as the original app.
This means Imagen’s overhead to the app’s execution
should be minimal.

Due to space considerations, we do not describe here the
specific source-code transformations that we have imple-
mented to meet these challenges. The interested reader is

Figure 1: Imagen Architecture: (top) Starting up
an app and saving a snapshot; (bottom) Loading a
previously saved snapshot to a different device.

referred to our recently published paper [7], a preprint copy
is available online3.

2.2 Architectural Overview
We describe the components involved in the migration of

a running app, as depicted in Figure 1. The flow of this
architecture will organize the steps for live migration that
will be shown in the demo.

The figure is divided into two: the top half (Save Snapshot
Flow) and the bottom half (Load Snapshot Flow). First,
a user starts to load an app in their browser and execute
it as usual (1); e.g. entering the URL or navigating from
a search page. In order to make migration possible, the
JavaScript source code of an application is transformed by
our system and instrumented with additional code. This
can be done by the developers using a source code processor,
prior to deployment. Alternatively, instrumentation can be
transparently injected by an end-user by making use of a
provided HTTP proxy which runs on the user’s own machine
(shown as (2) in the figure). Our technique supports both,
and either way, no manual changes to the application code
is necessary.

Ideally, there should be no noticeable change in the app’s
behavior after instrumentation. Using a simple GUI button
(added to the bottom of each web page by the instrumenta-
tion) a user can take a snapshot at any point during execu-
tion (3). This snapshot is then saved to a secondary storage
(4), either on a remote web service (Snapshot Storage in the
figure), or on the user’s local drive. Either way, the user
is provided with a URL, which can be used to retrieve and
load the snapshot.

Sometime later, the user opens a new browser, which can
be on a different device. In the example figure, the user mi-
grates the application from their desktop to a tablet (e.g.,
iPad). The user then enters the previously given URL in the
new browser (5). If instrumentation was provided by the ap-
plication developer, step (6) is not necessary. Otherwise at
(6), the proxy redirects the user’s browser to the original
URL where the snapshot was taken. However, rather than
returning the content at that URL, it returns the saved snap-
shot instead. This step allows the restored app to run in the

3http://www.cs.ubc.ca/~wohlstad/imagen.html

242



same browser security domain as the original application.
After the app is loaded into the new browser, it seamlessly
continues exactly where it had left off (7).

3. TOOL IMPLEMENTATION
Our implementation consists of two main parts: a source

code transformation for JavaScript (written in Java) and a
library of JavaScript functions.

The Java-based transformer is built on top of Mozilla’s
Rhino open-source project. It provides us JavaScript in the
form of abstract syntax trees (ASTs) which we then analyze
and transform with our own code. Our own Java code is
6,923 lines. The transformer can be run by a developer
through the command-line to transform their JavaScript
code. Alternatively, the transformer can be hosted in an
HTTP proxy by any user.

Our JavaScript library is injected into a web app by the
transformer (by inserting a <script> tag into the DOM).
The library performs most of the work of saving and load-
ing snapshots. It retrieves information that was stashed
away by the instrumentation. This information is com-
bined with other data available through window to build a
JSON formatted snapshot file consisting of: function clo-
sures, plain JavaScript objects, event-handlers, media ob-
jects, the DOM, and optionally any cookies for the web app.
To JSONize the DOM we make use an existing library called
JsonML [6]. Our JavaScript library is 5,028 lines of code.

Imagen is open source and publicly available.4 An online
video provides a demonstration of Imagen and the type of
application migration that will be shown in the live demo.5

For more technical details of the approach and implemen-
tation, we refer the interested reader to our recent paper
appearing in WWW 2013 [7].

4. LIVE DEMONSTRATION
In our demo, we will showcase the front-end, instrumen-

tation proxy, and JSON storage aspects of Imagen.
We have tested Imagen thoroughly [7] on at least five

feature-rich and interactive HTML5 applications, four of the
most popular browsers (Chrome, Internet Explorer, Firefox,
and Safari) and three types of devices (Windows PC, Mac,
and iPad). During our demo, we will demonstrate a cross-
browser session migration for two real-world web applica-
tions, namely Robots Are People Too (RAPT) and Color
Piano. Specifically, we will migrate

1. A live session of playing the RAPT game from Internet
Explorer on PC to Safari on iPad, and

2. A live session of using Color Piano from Chrome on
Mac to Firefox on PC.

Both RAPT and ColorPiano make intensive use of client-
side JavaScript for animation, media and maintaining ap-
plication state. Through illustrating the session migration
of these two applications, our goal is to highlight the trans-
parency, efficiency, and interoperability of Imagen.

RAPT [11] is a performance intensive application. It is
a side-scrolling two player platform game and features dif-
ferent challenges, drones, and rewards. It invites gamers to
invest sufficient time and effort to finish levels and make

4http://www.cs.ubc.ca/~wohlstad/imagen.html
5http://www.cs.ubc.ca/~wohlstad/imagenVideo.html

progress. A gamer may want to persist or migrate her ses-
sion of gameplay for any of the following reasons:

• Strategy: She perceives a risky move ahead and wants
to seamlessly try again when it fails without repeating
previous effort.

• Time: She has to work on something else and wants
to close this game completely from the browser. A
reason could be to free up some system resources since
the game can be performance intensive.

• Location: She is going somewhere and wants to con-
tinue the game at another location or on another de-
vice.

The current version of RAPT does not provide a feature
for saving progress during a game. By using Imagen, end
users can persist and migrate such game state without re-
quiring developers to provide any additional coding.

When migrating a session of RAPT, we will first show
briefly our proxy that instruments the JavaScript source
code. End users can host the proxy on their own machine,
or on another server such as Amazon EC2. Then, all they
have to do is just to specify the proxy’s IP in any device’s
Internet Settings. Similarly, deploying Imagen is flexible
because developers can host the proxy on their own appli-
cation servers, instead of relying on end users.

To demonstrate the difference between the original and
the instrumented application, we will first play the game
and show that there is no feature to save your game in the
original version. Next, we will run the version instrumented
by our tool. We will highlight how Imagen adds an HTML
menu bar on the application’s DOM which allows users to
Save and Restore their progress at any time (as in Figure 2).
Next we will show how the responsiveness of the application
remains nearly identical to the original.

To illustrate interoperability, we will keep the saved ver-
sion running in Internet Explorer, and then we will open
a saved snapshot in Safari. The focus here will be to show
how the application state resumes in another browser within
a few seconds.

To demonstrate some internals of our system, we will ex-
amine how the snapshot is saved as JSON data. We will
pick a random level of the game and start playing it. At
some point we will save the session, and then open the saved
JSON file so the audience will see how the data structure of
a snapshot is organized.

Color Piano [4] is a piano teaching animation. As a song
is played, the app animates a slider of sheet-music notes and
animates keys playing each note. Session migration would be
useful here as it allows piano students to pause and resume
at any particular positions in any songs they are practic-
ing. ColorPiano does not include this feature in its current
implementation.

Through demonstrating a session migration on ColorPi-
ano, our goal is to illustrate how well Imagen works on
HTML5 media objects such as HTML5 <canvas> and <au-

dio>. The demo will also show that the music and animation
are synchronized after migration, validating our support of
JavaScript event-handling.

5. CONCLUDING REMARKS
We have presented a generic solution and tool, called Im-

agen, for session migration, which works in the JavaScript
layer and also targets some HTML5 APIs. However there

243



Figure 2: Imagen on Robots Are People Too (RAPT): A session of playing RAPT in Internet Explorer (left);
the game state migrated to Firefox (right). The game state was saved in Internet Explorer (left) at some
time t0 and then this browser session was left running for n seconds. Then the previously saved state was
loaded in Firefox (right). Note that the images are not identical because the game state on the left has moved
forward in time and is now at the state corresponding to t0 + n. On the other hand, the state loaded on the
right correponds back to time t0. The reader is encouraged to view the online video to perceive the effect
in real-time. Imagen instruments RAPT’s JavaScript and inserts a toolbar for end users to easily save and
restore browsing sessions using a button (annotated by an ellipse on the top of the browser windows).

are still some APIs that are not covered by our current im-
plementation, such as WebWorkers and GeoLocation. Web-
Workers provides support for background computational
tasks but since each worker has an isolated memory and
cannot respond to UI events, our assumptions made in our
implementation that depend on a single-threaded model still
apply. While additional effort will be required to enable sup-
port, the fact that such APIs are being standardized should
help making migration support feasible.

While we have not focused on debugging in this demo,
it may be possible to use Imagen so that when an end
user requires urgent assistance, she can instantly duplicate
and share a session snapshot with developers who could in-
spect the state in a web developer tool such as FireBug. We
plan to investigate such debugging support also in our future
work.

6. REFERENCES
[1] F. Bellucci, G. Ghiani, F. Paternò, and C. Santoro.

Engineering JavaScript state persistence of web
applications migrating across multiple devices. In
Proc. of the Symposium on Engineering Interactive
Computing Systems, 2011.

[2] E. Benson, A. Marcus, D. R. Karger, and S. Madden.
Sync kit: a persistent client-side database caching
toolkit for data intensive websites. In Proc. of WWW,
2010.

[3] R. Berjon, T. Leithead, E. D. Navara, E. O’Connor,
and S. Pfeiffer. W3C HTML5, 2012.
http://dev.w3.org/html5/spec/.

[4] M. Deal. Colorpiano. http://mudcu.be/piano/.

[5] Introducing JSON. http://www.json.org/.

[6] JsonML. JSON Markup Language.
http://www.jsonml.org.

[7] J. Lo, E. Wohlstadter, and A. Mesbah. Imagen:
Runtime migration of browser sessions for JavaScript
web applications. In Proc. of International World
Wide Web Conference (WWW), 2013.

[8] PersistenceJS. http://persistencejs.org.

[9] A. Rashid and R. Chitchyan. Persistence as an aspect.
In Proc. of Aspect-oriented software development,
pages 120–129, 2003.

[10] S. Soares, E. Laureano, and P. Borba. Implementing
distribution and persistence aspects with AspectJ. In
Proc. of Object-oriented programming, systems,
languages, and applications, pages 174–190, 2002.

[11] E. Wallace, J. Ardini, K. Gishen, and P. Kernfeld.
Robots are people too. http://raptjs.com/.

244




