
Scalable K-Nearest Neighbor Graph Construction Based
on Greedy Filtering

Youngki Park, Sungchan Park, Sang-goo Lee
School of Computer Science and Engineering

Seoul National University
{ypark, baksalchan, sglee}@europa.snu.ac.kr

Woosung Jung
Department of Computer Engineering

Chungbuk National University
wsjung@cbnu.ac.kr

ABSTRACT
K-Nearest Neighbor Graph (K-NNG) construction is a prim-
itive operation in the field of Information Retrieval and Rec-
ommender Systems. However, existing approaches to K-
NNG construction do not perform well as the number of
nodes or dimensions scales up. In this paper, we present
greedy filtering, an efficient and scalable algorithm for se-
lecting the candidates for nearest neighbors by matching
only the dimensions of large values. The experimental re-
sults show that our K-NNG construction scheme, based on
greedy filtering, guarantees a high recall while also being 5
to 6 times faster than state-of-the-art algorithms for large,
high-dimensional data.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

Keywords
K-nearest neighbor graphs; greedy filtering; similarity join

1. INTRODUCTION
K-NNG construction is a primitive operation in the field of

Information Retrieval and Recommender Systems. For ex-
ample, assuming that we constructed a K-NNG graph whose
nodes represent users, we can quickly recommend items to
user u by looking at the purchase lists of u’s nearest neigh-
bors. As another example, if we implement an enterprise
search system, we can easily provide an additional feature
that finds K documents most similar to recently viewed doc-
uments.

Let us define the K-NNG construction formally. We as-
sume that the nodes of the K-NNG are represented by nor-
malized vectors, as shown in Table 1. Let the normal-
ized vectors be V and the dimensions in V be D. Each
vector v ∈ V consists of 〈di, rj〉 pairs where di ∈ D and
0 ≤ rj ∈ R ≤ 1. Given cosine similarity sim(vi ∈ V, vj ∈
V) = (vi · vj)/(‖vi‖ ‖vj‖) as a similarity measure, the K-
NNG construction returns the top-k similar vectors for each
vector.

As far as we know, NN-Descent [1] is the most efficient
approach for constructing K-NN graphs. While brute-force
algorithms require too many similarity calculations that cost

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Table 1: An example of greedy filtering

v1
d1 d3 d8 d4 d9

...0.5 0.37 0.33 0.31 0.23

v2
d1 d2 d5 d3 d8

...0.73 0.55 0.37 0.1 0.05

v3
d2 d7 d6 d1 d10

...0.4 0.29 0.27 0.25 0.1

v4
d5 d4 d3 d2 d1

...0.8 0.35 0.3 0.27 0.25

v5
d3 d5 d7 d4 d10

...0.48 0.37 0.34 0.32 0.2

O(|V |2|D|), NN-Descent dramatically reduces the number
of comparisons. However, it does not perform well as the
number of nodes or dimensions scales up. In this paper, we
present a novel, scalable algorithm and compare its perfor-
mance with those of existing approaches.

2. CONSTRUCTING K-NN GRAPHS
Assuming that we sorted the elements of each vector into a

descending order according to their values and that the pre-
fix of each vector is determined beforehand (See Table 1, for
example, where the prefixes are colored), according to length
filtering [2], we can guarantee that sim(suffix(vi), suffix(vj))
≤ τvi , ∀vj based only on the values of prefix(vi). This raises
the question of whether we can guarantee that sim(vi, vj) ≤
τvi if the dimensions of prefix(vi) and prefix(vj) do not
match at all. If sim(vi, vj) ≤ τvi , then there’s a high prob-
ability that the vectors 〈vi, vj〉 are not similar, because we
sorted the elements so that τvi is a small value. In Table 1,
there is a counterexample in which sim(v2, v4) > τv2 = 0.58
despite the fact that the dimensions of the prefixes do not
match. However, we observe that the counterexamples are
few and far between.

If we generalize this observation, we can assert that in
most cases, two vectors are not similar if their prefixes do
not overlap at all. If two vectors are not similar, there would
be no edge in K-NNG between them. That is to say, we
would obtain an approximate K-NNG by calculating simi-
larities between sorted vectors that have at least one com-
mon dimension in their prefixes. In Table 1 as an example,
we calculate the similarities of 〈v1, v3〉 , 〈v1, v4〉 and we filter
out 〈v3, v5〉. Because this approach initially checks whether
the dimensions of large values match, we will call it greedy
filtering.

227

Algorithm 1 K-NNG Construction Based on GF

Data: sorted vectors V , parameters ρ, K
Result: K-NN queues Q
begin

L[di]←− φ, ∀di ∈ D
for vi ∈ V do

L[dim(e1vi)] = L[dim(e1vi)] ∪ vi
P [vi]←− 2, ∀vi ∈ D

end
repeat

for di ∈ D do
for vj ∈ V do

vj ←− the jth vector in L[di]
SC[vj]←− SC[vj] + |L[di]|

end

end
for vi ∈ V do

if SC[vi] < ρK and |vi| ≥ P [vi] then

L[dim(e
P [vi]
vi)]←− L[dim(e

P [vi]
vi)] ∪ vi

P [vi]←− P [vi] + 1
end

end

until L is not changed in this iteration
Q[vi]←− φ,∀vi ∈ V
for di ∈ D do

compare all pairs 〈vx, vy〉 in L[di]
update the priority queues, Q[vx] and Q[vy]

end
return Q

end

Algorithm 1 describes how a K-NNG is constructed based
on greedy filtering. ejvi denotes the jth element of the vector
vi, dim(e) denotes the dimension number of the element e,
and SC[vi] denotes the number of similarity calculations for
the vector vi. For vectors whose SC < ρK, we incrementally
increase their prefix sizes in a round-robin fashion. Table 1
shows the prefixes determined by ρ = 2. By default, we
use ρ = 2, which means that we expect there are K-nearest
neighbors for each vector among approximate ρK-nearest
neighbors.

3. EXPERIMENTS
We considered four types of algorithms for comparison:

Inverted Index Join as a baseline algorithm, which calcu-
lates all similarities with inverted indices [2]; NN-Descent
[1], which was developed for the purpose of constructing K-
NN graphs; similarity join algorithms [2][3], which return
every pair 〈vi, vj〉 whose similarity is above ε; and the top-
k similarity join algorithm [4], which returns k pairs with
the highest similarity values. The third and fourth types of
algorithms should be repetitively executed while varying ε
or k until K-NN graphs are found. Unfortunately, because
they did not perform better than Inverted Index Join, we
only report the results of Inverted Index and NN-Descent for
comparison in this paper. We implemented all algorithms in
Java and executed them on a single workstation with 14GB
RAM and a 3GHz CPU.

Figure 1 shows the execution time for the DBLP dataset
as the data scales (ρ = 2 and K = 10). Not shown is the
data preprocessing time, which takes only a minor portion.

50K 100K 150K 200K 250K

0

5,000

10,000

Node Size

E
x
ec

u
ti

o
n

ti
m

e
(i

n
se

co
n
d
s)

Greedy Filtering

NN-Descent

Inverted Index Join

Figure 1: Execution time

Table 2: Recall and scan rate

Nodes Dim.
NN-Descent Ours

recall scan. recall scan.
50,000 55,010 0.469 0.016 0.898 0.061
100,000 87,759 0.339 0.008 0.916 0.045
150,000 115,703 0.282 0.006 0.914 0.032
200,000 140,913 0.247 0.004 0.901 0.024
250,000 163,841 0.211 0.004 0.906 0.019

Our approach performs best among all algorithms; compar-
atively much better when the data scales. Table 2 shows the
recall and scan rate with the same parameters. Recall is the
number of correct k-nearest neighbors in K-NNG divided by
the number of edges in K-NNG; the scan rate is the total
number of similarity calculations of the algorithm divided
by the total number of similarity calculations of the brute-
force search. The results show that our approach maintains
a stable recall value above 0.9 as the data scales, whereas
the recall of NN-Descent decreases gradually. An interest-
ing finding is that the scan rate of NN-Descent is lower than
that of our approach. However, because our approach does
not require significant overhead, such as overhead for main-
taining hash tables, it is faster than NN-Descent.

4. ACKNOWLEDGMENTS
This work was supported by the National Research Foun-

dation of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. 20120005695). This work was supported
by Seoul R&BD Program(WR080951C0209725).

5. REFERENCES
[1] W. Dong, C. Moses, and K. Li, “Efficient k-nearest

neighbor graph construction for generic similarity
measures,” in WWW ’11, pp. 577–586, 2011.

[2] D. Lee, J. Park, J. Shim, and S.-g. Lee, “An efficient
similarity join algorithm with cosine similarity
predicate,” in DEXA ’10, pp. 422–436, 2010.

[3] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all
pairs similarity search,” in WWW ’07, pp. 131–140,
2007.

[4] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set
similarity joins,” in ICDE ’09, pp. 916–927, 2009.

228

