
Fast Outlier Detection Despite the Duplicates

Jay-Yoon Lee1 U Kang2 Danai Koutra1 Christos Faloutsos1

1Carnegie Mellon University 2KAIST
leejayyoon@cmu.edu {danai,christos}@cs.cmu.edu ukang@cs.kaist.ac.kr

ABSTRACT
Given a large cloud of multi-dimensional points, and an off-the-
shelf outlier detection method, why does it take a week to fin-
ish? After careful analysis, we discovered that duplicate points
create subtle issues, that the literature has ignored: if dmax is the
multiplicity of the most over-plotted point, typical algorithms are
quadratic on dmax. We propose several ways to eliminate the prob-
lem; we report wall-clock times and our time savings; and we show
that our methods give either exact results, or highly accurate ap-
proximate ones.

1. INTRODUCTION
Outlier detection, also known as anomaly detection, is an impor-

tant area of data mining which has been receiving a lot of research
attention [6, 5, 1, 2]. The size of the data to apply outlier detection
algorithms is growing at an unprecedented rate. These big data pose
new problems, such as the “duplicate data point” problem, which
refers to the existence of many data points with same coordinates.
For example, assume a 2-D dataset <degree, PageRank> of nodes
in a graph. Although for up to medium-sized graphs duplicates are
not an issue, in billion-node graphs multiple nodes have the same
feature pairs.

Traditional outlier detection algorithms did not consider the du-
plicate data point problem for two reasons: (i) they dealt with rel-
atively small amount of data with few -if any- duplicates, and (ii)
most outlier detection algorithms work on Geographical Informa-
tion System (GIS) data which do not have many duplicates as build-
ings, obviously, never exist over a building.

Challenges. The existence of the duplicate data points in tra-
ditional algorithms poses two challenges. (a) Degeneracy. The
outlier score may not be defined at all for duplicate points. (b)
Running Time. The duplicate points retard the computation of the
existing algorithms; e.g., the running time grows from near-linear
to near-quadratic.

2. OBSERVATIONS
To address the “duplicate data point” issue, we focus on the

widely used outlier detection scheme Local Outlier Factor algo-
rithm (LOF) [3] which is based on k-nearest neighbor (kNN), and
suffers most from the problem of duplicates.

In a nutshell, LOF compares the local density of each data point
to the densities of its neighbors by employing the kNN technique.
Data points whose densities differ much from their neighbors’ den-
sities are flagged as outliers.

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

OBSERVATION 1 (LOF WITH DUPLICATES). LOF works fine
with normal use, but has problems with large duplicate points. Nu-
merous duplicates impede the calculation of LOF score by increas-
ing the number of data access to O(max(ci

2)), where ci is count
of duplicates for unique element ui.

Table 1 shows the prevalence of the problem of duplicate points
in real datasets.

Stack Overflow | US Patent

Top5 count count2 | count count2

1 4221 17.8 M | 60598 3.7 B
2 3799 14.4 M | 59744 3.6 B
3 3147 9.9 M | 56191 3.2 B
4 2844 8.1 M | 49192 2.4 B
5 2374 5.6 M | 41929 1.8 B

sum 16385 (6.70%)55.8 M (61.7%)|267654 (12.9%)14.7 B (79.5%)

Table 1: (M: million, B: billion.) The number of points (count) and the
number of points squared (count2) for the top 5 largest duplicates in real
world data. The top 5 duplicate counts comprise 6.70% and 12.90% of total
number of points in Stack Overflow and US patent data, respectively. Also,
they occupy 61.7% and 79.5% of the total sum of count2, so more than
half of the computation is spent on these points.

3. PROPOSED METHOD: FAST OUTLIER
DETECTION

The challenges mainly arise from regarding as unique the points
that are similar in the projected feature space, and handling them
separately (e.g., all the <pagerank, degree> points with the same
coordinates are viewed as distinct points). Our algorithms cleverly
handle these problems.

3.1 FADD: Fast Anomaly Detection given Du-
plicates

FADD considers identical coordinates in the n-dimensional space
a super node with their duplicate count information, ci. More
specifically, rather than visiting all of the N points separately, FADD
only deals with M unique super nodes.

3.2 G-FADD: Grid based FADD
In the same spirit of FADD, we adopt a grid-based method, G-

FADD, in order to analyze larger aggregate behavior, and reveal
anomalous points in different granularities. The granularity is con-
trolled by the parameter l, which denotes the number of grids each
dimension holds: for n-dimensional space, the number of boxes
would be ln. The basic idea is to observe the behavior of each
grid instead of the behavior of each point: we count the number of
points that reside in each grid and run FADD only for the grids that

195

Figure 1: Runtime comparison
of FADD and G-FADD vs.
LOF, in log-log scale. LOF died
out of memory for more than
20K data points. FADD and G-
FADD runs 1590× and 19132×
faster than LOF, respectively.

have a low count. The threshold for the count is set to k+1 - where
k is defined by the kNN algorithm - , since it means that the grid is
self-sufficient for querying nearest neighbors and dense enough to
be exempt from outlier detection at the chosen granularity.

4. EXPERIMENTS
We use the Twitter data described in Table 2. The dataset con-

tains multi-dimensional points whose dimensions (features extracted
by Pegasus [4]) are specified in the ‘Description’ column. We run
the experiments on a machine with 2 dual-core Intel Xeon 3.00
GHz, 16 GB memory and 480 GB hard disk, running Red Hat
Linux 4.1.2.

Data # Dimensions # Points Description

Twitter 2009 3 39,972,230 degree - PageRank - triangle
US Patent 2 2,076,613 degree - PageRank

Stack Overflow 2 243,776 degree - PageRank

Table 2: Summary of the data used. Each dataset contains multi-
dimensional points whose dimensions are specified in the last column.

4.1 Running Time
We show how our proposed algorithms, FADD and G-FADD,

outperform the existing algorithm. Figure 1 shows the running
times of FADD and G-FADD, compared to LOF, on a synthetic
2-dimensional data with 50% duplicate points.

4.2 Impact of Granularity
Figure 2 shows the top 3 outliers from FADD and G-FADD

with different grid granularities. Note that for all the data, the top
outliers from FADD are local outliers buried in the middle of the
main clouds of points because of the duplicate points in the main
cloud. However, G-FADD with the coarsest grid granularity (l=8)
gives global outliers which are separated from the main clouds of
points. Also note that as the grid granularity becomes finer, the
output from G-FADD gets closer to that from FADD.

Fine granularity (local outliers) −→ Coarse granularity (global outliers)

Twitter (degree-PageRank):
(a) FADD || G-FADD (b) l=1K (c) l=256 (d) l=8

Twitter (degree-triangle):
(e) FADD ||G-FADD (f) l=1K (g) l=256 (h) l=8

Figure 2: [Best viewed in color.] 2-D scatter plot highlighting top 3 out-
liers from FADD and G-FADD with different grid granularity l. The blue,
green, and red triangles denote the points with the 1st, 2nd, and 3rd largest
outlier scores, respectively.

4.3 G-FADD on Real Data
Twitter degree-PageRank.. The top 3 outliers in Figure 2 (d),

Twitter degree-PageRank plot, are unpopular accounts with very
small degrees (7, 2, and 7, respectively), but they have relatively
high PageRank values which make themselves outstanding. It turns
out their neighbors have relatively high degrees: the average de-
grees of neighbors are 1646, 89, and 343014, respectively. Due to
the many neighbors, they have higher PageRanks despite their low
degrees.

Twitter degree-triangle.. In Figure 2 (h) degree-triangle plot,
each point in the plot represents the degree and the number of
participating triangles of a node in the Twitter who-follows-whom
graph. All the top 3 outliers have relatively small number of trian-
gles compared to their neighbors. The top outlier (blue triangle) is
likely to be an advertisement spammer since it has only 3 tweets
which are all about free gift card offers from Wal-Mart and Best
Buy, and it has no followees at all. It has few triangles since the
followers are not likely to know each other, although some of them
had same interest and gave some triangle in a stroke of luck. The
third outlier (red triangle) is an account of a comics character which
has 11207 followers and 6 followees. It seems to have few trian-
gles because the fans (followers) of the character might not be close
friends with each other.

5. CONCLUSION
In this paper we propose FADD and G-FADD, scalable algo-

rithms that detect outliers from multi-dimensional points despite
large duplicates. Our main contributions are: (1) No Degeneracy.
We re-design the standard outlier detection algorithm to overcome
the problem of duplicate points in large, real world data; (2) Run-
ning Time. Our algorithms enjoy near-linear runtime compared
to the near-quadratic running time of the existing algorithm; (3)
Discovery. We analyze large, real world data, and find interesting
outliers.

6. ACKNOWLEDGMENTS
Funding was provided by the Defense Advanced Research Projects Agency (DARPA)

under Contract Number W911NF-11-C-0088. Research was also sponsored by the
Army Research Laboratory and was accomplished under Cooperative Agreement Num-
ber W911NF-09-2-0053. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

7. REFERENCES
[1] L. Akoglu, M. McGlohon, and C. Faloutsos. OddBall:

Spotting Anomalies in Weighted Graphs. In PAKDD, 2010.
[2] V. Barnett and T. Lewis. Outliers in statistical data. John

Wiley & Sons Ltd., 2nd edition edition, 1978.
[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF:

Identifying density-based local outliers. In SIGMOD
Conference, pages 93–104, Dallas, TX, 2000.

[4] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system - implementation and
observations. In ICDM, 2009.

[5] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and
C. Faloutsos. Loci: Fast outlier detection using the local
correlation integral. In ICDE, pages 315–326, 2003.

[6] J. Tang, Z. Chen, A. W. Fu, and D. W. Cheung. Enhancing
Effectiveness of Outlier Detections for Low Density Patterns.
In PAKDD, pages 535–548, 2002.

196

	Introduction
	Observations
	Proposed Method: Fast Outlier Detection
	FADD: Fast Anomaly Detection given Duplicates
	G-FADD: Grid based FADD

	Experiments
	Running Time
	Impact of Granularity
	G-FADD on Real Data

	Conclusion
	Acknowledgments
	References

