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ABSTRACT
Many real-world networks contain nonstructural informa-
tion on nodes, such as the spatial coordinate of a location,
profile of a person, or contents of a web page. In this pa-
per, we propose Dist-Modularity, a unified modularity mea-
sure, which is useful in extracting the multilevel communities
based on network structural and nonstructural information.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-

gorithms, network problems
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1. INTRODUCTION
Modularity [2] is a measure for evaluating the “goodness”

of a partition of a network into communities. The definition
of modularity involves a comparison between the observed
network and a null model, which serves as a reference. This
null model should characterize some features of the observed
network. However, the previously used null models are not
good representations of real-world networks and thus result
in less accurate modularity. A common feature of many real-
world networks is “similarity attraction (SA)”, i.e., nodes
that are similar have a higher chance of getting connected.
In this paper, we create a new null model that captures
the SA feature. Based on this null model we propose Dist-
Modularity. Compared with the famous NG-Modularity [2]
proposed by Newman and Girvan, Dist-Modularity has the
following advantages: 1) It applies to networks that contain
nonstructural information. 2) It is useful in extracting the
multilevel communities.

2. DIST-MODULARITY
For simplicity, we limit our vision to undirected networks.

Suppose m and n are the numbers of edges and nodes, re-
spectively. We use dij to denote the similarity distance be-
tween nodes vi and vj : the smaller of dij , the more similar
of the two nodes. The estimation of dij is out of the focus
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Figure 1: Extracting the multilevel communities and explor-
ing the community evolution.

of this paper. In general, dij can be estimated by a distance
function that takes the network structural or nonstructural
information about vi and vj as input.

In the following, we first propose a new null model and
then present Dist-Modularity. In our null model, the ex-
pected number of edges between vi and vj is defined as

PDist
ij =

P̃ij+P̃ji

2
, where P̃ij =

NiNjf(dij)∑
n
t=1

Ntf(dti)
. In this defi-

nition, we have a large freedom in specifying Ni and f(d).
Ni can be used for controlling the connectivity of vi. To
ensure that our null model preserve the number of edges of
the observed network, Ni should satisfy the normalization
condition

∑n

i=1 Ni = 2m. Beyond this condition, we can
specify Ni freely. For example, Ni can be the degree ki of
vi, or a representative attribute of vi. f(d) can be used to
control the magnitude of the SA effect in our null model.
For example, 1) if we specify f(d) as a decreasing function,
PDist
ij is negatively related to dij . Thus, nodes that are simi-

lar have a higher chance of getting connected — an evidence
of the SA effect; 2) if we specify f(d) = 1, PDist

ij is not related
to dij . Thus, the SA effect vanishes.

Based on the null model, we can define Dist-Modularity
as QDist = 1

2m

∑n

i,j=1(Aij − PDist
ij ) δ(li, lj), where Aij is the

number of edges between vi and vj in the observed network,
li is the community membership of vi, and δ is the Kro-
necker’s delta. Note that Dist-Modularity is a unified mea-
sure, since we can specify Ni and f(d) freely and produce
different QDist. In particular, with Ni = ki and f(d) = 1,
Dist-Modularity reduces to NG-Modularity. Besides, Dist-
Modularity has the following advantages:

• It applies to networks that contain nonstructural infor-
mation. Note that dij is at the heart of the definition
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Figure 2: Extracting the multilevel communities along the σ axis.
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Figure 3: Exploring the community evolution along the time slot.

of Dist-Modularity. In networks with nonstructural in-
formation, we can effectively use such information in
the estimation of dij , and thus associate them with
Dist-Modularity.

• It is useful in extracting the multilevel communities.
We can generate Dist-Modularity by specifying f(d) =
exp(−(d/σ)2), where σ ∈ (0,+∞) is a parameter. By
tuning σ we can adjust the decreasing rate of the func-
tion and thus the magnitude of the SA effect. Mean-
while, optimizing Dist-Modularity at different σ brings
multilevel communities.

3. EXPERIMENT
To demonstrate the advantages of Dist-Modularity, we ap-

plied it to the antenna-to-antenna network of D4D dataset.
This network is a spatial network where nodes and edges
are embedded in space. It is based on records of mobile
phone calls in Cote d’Ivoire. The nodes represent 1216 an-
tennas which are associated with spatial coordinate infor-
mation. The edges represent communications between an-
tennas, with edge weight indicating the number of calls. Be-
sides, this network is temporal: it has ten consecutive slices
and each slice represents a two-week period record.

In spatial networks there is always “space effect”, where
long-range edges (i.e., the spatial distance between the two
ends of the edge is long) are restricted due to cost. We
are interested in the space-independent communities. That
is, our goal is to take out the space effect and extract the
hidden communities that are not due to the space factor [1].
Consequently, NG-Modularity fails to work, since it does not
consider the spatial attribute of a node.

Note that the space effect is just our SA effect reflected
in spatial networks: the two effects match when we estimate
dij by the spatial distance between vi and vj . Thus we
can simulate the space effect in the null model. Then, by
comparing the observed network and the null model as the
definition of Dist-Modularity, we are able to take out the
space effect of the observed network and achieve our goal.

In specific, we specified Ni = ki, f(d) = exp(−(d/σ)2),

estimated dij by the Euclidean distance of the coordinates
of vi and vj , and employed Dist-Modularity optimization
algorithm to this network. As shown in Fig. 1, we can ex-
tract the multilevel communities along the σ axis, and ex-
plore the community evolution along the time slot. Suppose
d̄ =

∑n

i,j=1 dij/n
2 is the average distance of all node pairs.

Fig. 2 shows the community structure in one of the network
slice when σ equals to 0.1d̄, 0.5d̄, 1d̄, 5d̄, and 10d̄, respec-
tively. Fig. 3 shows the community evolution at σ = 1d̄.
From Fig. 2 we can find that as σ increases, the community
structure gradually correlates with the geography. In par-
ticular, the partition at σ = 1d̄ matches the administrative
subdivision of the country to a great extent. This example
shows that Dist-Modularity successfully uses the network
structural and nonstructural information for extracting the
multilevel communities while NG-modularity fails.

4. CONCLUSION
We create a null model that captures the SA feature of

real-world networks. Based on this null model we define
Dist-Modularity, a unified modularity measure that incor-
porates NG-Modularity as a special case. Dist-Modularity
is useful in extracting the multilevel communities based on
network structural and nonstructural information.
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