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ABSTRACT
Can one assess, by visiting only a small portion of a graph,
if a given node has a significantly higher PageRank score
than another? We show that the answer strongly depends
on the interplay between the required correctness guarantees
(is one willing to accept a small probability of error?) and
the graph exploration model (can one only visit parents and
children of already visited nodes?).

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems – Computations on discrete structures

General Terms: Algorithms, Theory

Keywords: PageRank; local computation; graph ranking

1. LOCAL PAGERANK
PageRank [8], originally devised to measure web page cen-

trality, has become the reference algorithm for ranking nodes
of a graph in many application domains (to name but a few,
web crawling, bioinformatics, natural language processing,
and social networks analysis – see [6]). On a graph G of n
nodes, the PageRank score of a node v is defined as:

P (v) =
1− α
n

+ α
∑
u:u→v

P (u)

outdegree(u)
,

∑
v∈G

P (v) = 1

where u → v denotes that u is a parent of (i.e. has an out-
going link to) v and the damping factor α is some constant
in the interval (0, 1). Thus, 1−α

n
≤ P (v) ≤ 1.

PageRank is often employed to analyse graphs, such as
web or social networks, so large that they are difficult to
store, “snapshot”, or even access in their entirety (e.g. for
privacy limitations [10]). Thus, considerable effort [2, 3, 4,
5, 9] has been applied to minimize the portion of the graph
one must explore to compute PageRank (and other global
graph properties) for a restricted set of target nodes.

A typical model for this local PageRank problem involves
a link server [3] that responds to any query about a given
node with a list of all nodes pointed by it, and a list of all
nodes pointing to it (like Google’s link: does). The goal is
to minimize the number of queries necessary to determine
which of two given nodes has the greater PageRank score
(allowing an arbitrary answer if the two scores are within
a factor 1 + ε). Alternative models allow instead jump and
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(random)crawl queries [4, 5], that return respectively a ran-
dom node of the graph, and a (random) subset of its neigh-
bours.

This work analyses the impact, on the number of queries
necessary for local PageRank computations, of the interplay
between exploration model and correctness guarantees; and
in particular between the requirements that the exploration
be “local” (i.e. visiting only parents and children of already
visited nodes) and that the algorithm always return a correct
answer (rather than allowing for a small probability of error).

2. DETERMINISTIC AND LAS VEGAS
Our technical report [6] proves that any local PageRank

algorithm that is always correct may in general have to visit
all but a vanishingly small fraction of a graph. This in-
cludes deterministic algorithms as well as Las Vegas ran-
domized algorithms (that guarantee a correct answer, but
not a bounded number of queries); it does not include Monte
Carlo randomized algorithms (that may provide an incorrect
answer with positive probability). Our negative result holds
even if comparing the two top ranking nodes, even if the
ratio between their PageRank scores is large (regardless of
the scores’ values). Crucially, it holds for every exploration
model providing any combination of jump, (random)crawl
and link server queries – and, more in general, for any ex-
ploration model in the literature.

The cornerstone of this very general result is the notion
of ranking subgraph for a given set of nodes – intuitively, a
subgraph with enough information to determine their rela-
tive ranking. We show that any algorithm that is always
correct always explores a ranking subgraph for the nodes it
compares, and that in some cases each such subgraph almost
coincides with the entire graph. This yields:

Theorem 1. Choose a damping factor α ∈ (0, 1), a score
function Θ(1/n) ≤ p(n) ≤ Θ(1), and a separation function
Θ(1/n) ≤ ε(n) ≤ Θ(1). There exists a graph G of arbitrarily
large size n containing nodes u and v such that:

1. P (u) = Θ(p(n)), P (v)/P (u) ≥ 1 + Θ(ε(n))

2. u, v are the top ranking nodes in G

3. to decide if P (v) > P (u), any deterministic local rank-
ing algorithm and (any execution of) any Las Vegas
local ranking algorithm need n(1−O(p(n)ε(n))) queries

Theorem 1 extends to a much more general exploration
model the Ω(n) queries lower bound for deterministic algo-
rithms limited to make link server queries [7]. It extends

179



and improves the analogous Ω(
√
n) lower bound for Las Ve-

gas algorithms [7]. Furthermore, it does so not only for the
problem of the relative ranking of two nodes, but also for
the problem of computing within a factor

√
1 + ε their Page-

Rank scores [3] (obviously the solution to the latter yields a
solution to the former). And it shows that, as the absolute
score separation p(n)ε(n) decreases below Θ(1), any algo-
rithm guaranteeing a correct output must explore the entire
graph, save possibly a vanishingly small portion.

3. MONTE CARLO
Unlike deterministic and Las Vegas algorithms, Monte

Carlo algorithms do not admit a characterization in terms
of ranking graphs, and are not subject to the corresponding
lower bounds. In fact, in the case of Monte Carlo algorithms
the exploration model does make a difference. If the explo-
ration must be local, in the sense that one may only visit
parents or children of already visited nodes (in addition to
the target nodes), then essentially the same bounds of The-
orem 1 hold – albeit through a different proof technique:

Theorem 2. Choose a damping factor α ∈ (0, 1), a sep-
aration ε > 0, and a score function Θ(1/n) ≤ p(n) ≤ Θ(1).
For any Monte Carlo local ranking algorithm with confidence
1
2

+ δ that can perform only (random)crawl and link server
queries there exists a graph G of arbitrarily large size n con-
taining nodes u and v such that:

1. P (u), P (v) = Θ(p(n)), P (v) ≈ (1 + ε)P (u)

2. Ω(δn) queries are needed to decide if P (v) > P (u)

On the other hand, if the exploration can be non-local,
a Monte Carlo algorithm can achieve considerably better
performance. This is true even if one is limited to jump and
randomcrawl queries, where the only non-local exploration
option is visiting a graph node chosen uniformly at random.
Consider the following simple algorithm (which can be made
oblivious to p [6]; the meaning of p and η is explained below):

Algorithm 1 SampleRank(G, u, v, p, 1− η)

Perform 8 log( 8
η

) 1
p
( 1+ε
ε

)2 random walks (starting from
a node returned by a jump query and at each step
ending with independent probability 1− α)

P̂ (u), P̂ (v)← fraction of random walks ending in u, v

return the ranking of u, v induced by P̂

One can prove:

Theorem 3. Consider u, v such that P (v) ≥ (1+ε)P (u)
and P (u) ≥ p. A call to SampleRank(G, u, v, p, 1 − η) has
probability at least 1 − η of providing their correct ranking
while performing at most 14

1−α log( 8
η

) 1
p
( 1+ε
ε

)2 queries.

The bounds of Theorem 3 are asymptotically tight except
for very small PageRank scores, even for algorithms that can
make crawl and link server queries in addition to jump and
randomcrawl ones. More formally one can prove:

Theorem 4. Choose a damping factor α ∈ (0, 1), a sep-
aration ε > 0, and a score function Θ(1/n) ≤ p(n) ≤ Θ(1).
For any Monte Carlo local ranking algorithm with confidence
1
2

+δ that can perform jump, (random)crawl and link server
queries there exists a graph G of arbitrarily large size n con-
taining nodes u and v such that:

1. P (u), P (v) = Θ(p(n)), P (v) ≈ (1 + ε)P (u)

2. Ω(δ ·min(1/p(n), n
2
3 )) queries are needed to decide if

P (v) > P (u)

This is the first analysis of the impact of the exploration
model on Monte Carlo algorithms. Theorem 2 improves to
Ω(n) the Ω(

√
n) lower bounds of [3, 7]. Theorem 4 gives

the first non-trivial lower bounds on the performance of al-
gorithms using jump and link server queries for local Page-
Rank computations, which almost (but not quite) match
the bounds holding under the more restrictive jump and
randomcrawl model [6].

4. CONCLUSIONS
Two ingredients are necessary for efficient local PageRank

computations: exploring the graph non-locally and accepting
a small probability of error. If either one is missing, visiting
almost the entire graph may be necessary to just determine
which of two nodes has the higher PageRank score. If both
ingredients are present, then a very simple algorithm allows
efficient computation of PageRank scores and rankings us-
ing, as the sole non-local operation, a query for a graph
node chosen uniformly at random (and this is optimal even
among the class of algorithms employing far more powerful
exploration primitives, save possibly for very small Page-
Rank scores).

All our results hold both for computing PageRank scores,
and for computing PageRank rankings; the two problems
appear then essentially equivalent.

In practical terms, our results imply that it is essentially
impossible to guarantee correctness when attempting to com-
pute PageRank scores precisely, or to separate nodes with
relatively close PageRank scores, on any graph (like the web
or many social networks) that evolves relatively quickly over
time [1] and/or sports even small inaccessible portions [10].
Another practical consequence is that providing random web
pages can be an extremely useful service – possibly more
than providing the set of pages pointing to a given page.
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