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ABSTRACT
This paper proposes Fria, a fast and robust instance align-
ment framework across two independently built knowledge
bases (KBs). Our objective is two-fold: (1) to design an
effective instance similarity measure and (2) to build a fast
and robust alignment framework. Specifically, Fria consists
of two-phases. Fria first achieves high-precision alignment
for seed matches which have strong evidence for aligning. To
obtain high-recall alignment, Fria then divides non-matched
instances according to the types identified from seeds, and
gives additional chances to the same-typed instances to be
matched. Experimental results show that Fria is fast and ro-
bust, by achieving comparable accuracy to state-of-the-arts
and a 10-times speed up.
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1. INTRODUCTION
An abundance of public linked data, i.e., DBpedia [1]

and YAGO [3], poses the challenge of interlinking such data
toward an ultimate knowledge base (KB). This problem,
known as instance alignment, has been actively studied in
the literature [4, 5]. PARIS [5] is a holistic approach to align-
ing relations, concepts and instances in a probabilistic fash-
ion. ObjCoref [4] is a self-training approach using a kernel
built from OWL semantics. However, despite a rich body
of existing research, there is little work for pursuing both
efficiency and robustness.

To achieve this goal, we propose a two-phase framework
with a new instance similarity, called Fria. Specifically, the
first high-precision phase identifies a small seed set with
near-perfect precision. The second high-recall phase follows
to give second chances to false positives, by comparing again
to entities of the same types.
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(a) Two sub-graphs for instances L.Messi and Messi

‘Lionel’ ‘Messi’ ‘Forward’ ‘50 goals’
‘Lionel’ 1 0 0 0.125
‘Messi’ 0 1 0 0

‘Leo Messi’ 0.333 0.556 0.111 0.111

(b) Literal similarities using normalized Levenshtein distance

Figure 1: Computing the similarity score between
instances L.Messi and Messi from KBX and KBY

2. INSTANCE SIMILARITY MEASURE
This section first introduces a new instance similarity mea-

sure which is robust for the asymmetry between KBs. The
KB refers to a collection of knowledge with instances, liter-
als, and their relationships. To illustrate this, Figure 1(a)
depicts two KBs in graphs, where nodes are instances (rect-
angles) and literals (italics), and edges represent relation-
ships or properties between them.

To design a robust similarity measure, a challenging is-
sue is how to adapt the asymmetric structures of KBs. As
shown in Figure 1(a), KBY is much richer than KBX for
the properties on Messi. In this case, mapping literals and
penalizing for unmatched one, e.g., ‘50 goals’, may lead to
significantly underestimating the similarity of L.Messi and
Messi due to the presence of asymmetry.

To address this problem, we aggregate literal-level map-
pings with high string similarity scores. Given two instances,
we first extract some related literals for each instance, and
then choose the literal pairs that represent the same knowl-
edge with one-to-one constraint as discussed in [2]. Among
all possible mapping pairs, we thus selectively consider some
pairs whose string similarities exceed a certain threshold.
Unmatched literals are pruned out so that asymmetric lit-
erals do not penalize the overall similarity score of aligning
instances. The overall instance similarity can be calculated
by the sum of the string similarity of matched literal pairs
whose values are greater than the threshold.

Figure 1(b) describes string similarities for all possible
literal pairs. When the threshold is set as 0.2, only the
literal pairs (bold) about ‘Lionel’ and ‘Messi’ are matched,
and the instance similarity score is thus 2, where asymmetric
literals such as ‘Forward ’ and ‘50 goals’ are pruned out.
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Figure 2: The overview of our proposed framework

3. INSTANCEALIGNMENT FRAMEWORK
Using the proposed similarity measure, we develop a fast

and robust instance alignment framework Fria. The problem
is viewed as matching a weighted bipartite graph in which
edges represent matching candidates with weights of simi-
larity scores.

To address this problem, Fria consists of two phases. In
the first phase, Fria uses a widely adopted abstraction of
generating a bipartite graph. In this phase, it can attempt
to find the maximal bipartite matching, incurring quadratic
time complexity. Instead, Fria is built upon a k-regular bi-
partite graph by connecting only top-k similar instances per
each, and then only finds the edges representing mutual top-
1 matches (Figure 2a). Because it is much more conservative
than general matching, this process is highly efficient with
near-perfect precision, but suffers from low recall.

To boost recall, the second phase (Figure 2b) hierarchi-
cally partitions non-matched instances into clusters with the
same types. The type pairs are mined from seed matches
using a feature selection method, e.g., Pearson’s chi-square.
For example, in our example KBs, if Player and Footballer

are the mostly found type pair in seeds, non-matched in-
stances are divided by these types. That is, the instances
having Player of KBX and Footballer of KBY are col-
lected into the same bipartite graph, and they have the sec-
ond chances to be matched within the subgraph. As illus-
trated in Figure 2(b), such hierarchical partitioning can be
done until no instance matches.

To summarize, Fria can achieve both efficiency and ro-
bustness using the two-phase approach that first identifies
high-precision seed instances and then collects non-matched
instances by types. In particular, in the second phase, hier-
archical partitioning is able to collect smaller instance sets
to be matched (low running time) without compromising
recall.

4. EVALUATION
We evaluated our proposed framework Fria in real-world

large-scale KBs, i.e., YAGO [3] and DBpedia [1]. These KBs
include millions of high-precision instances. To simulate the
alignment for asymmetric instances, we prepared two differ-
ent sized KBs for DBpedia. Specifically, DBpediaS is com-
prised of high-quality refined infobox types and properties,
which is same with one used in PARIS [5]. DBpediaL includes
about five times of instances and literals than DBpediaS.
Our experiments were conducted in Java on Intel i7 3.6 GHz
CPU and 64 GB RAM.

To evaluate the robustness of our proposed similarity mea-
sure, we first computed the similarity scores for every possi-

Figure 3: Precision-recall graphs of instance sim-
ilarity measures of YAGO-DBpediaS(left) and YAGO-
DBpediaL(right)

Table 1: Instance alignment results for YAGO-
DBpediaS dataset

Framework Phase Prec. Rec. F1. Time

Fria
1 0.974 0.587 0.732 35 min
2 0.904 0.702 0.791 30 min

PARIS
1 0.86 0.69 0.80 4 h
2 0.89 0.73 0.81 5 h
3 0.90 0.73 0.81 5 h

ble instance pair (i.e., a complete bipartite graph), and se-
lected mutually top-1 instance pairs. The threshold is empir-
ically set as 0.9 in this task. We then compared our measure
with three other set similarity measures such as Jaccard sim-
ilarity, Cosine similarity with TF-IDF, and Jensen-Shannon
divergence (JSD). Figure 3 depicts precision-recall graphs
for each similarity measure. It is clear that our similarity
measure outperforms all the other measures over various pa-
rameter settings in both tasks.

We then compared Fria with PARIS for YAGO-DBpediaS
task (as reported in [5]). Fria built a 10-regular bipartite
graph in the first phase (i.e., high-precision matching). Ta-
ble 1 shows instance matching results for each phase. Af-
ter the second phase (i.e., high-recall matching) was per-
formed, the recall of Fria increased 0.115 without signif-
icantly compromising precision (i.e., −0.07). It is clear
that Fria achieved comparable accuracy, and was faster than
PARIS by one order of magnitude.
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