
Scalable Processing of Flexible Graph Pattern Queries on
the Cloud

Padmashree Ravindra
Department of Computer Science

North Carolina State University, Raleigh, USA
pravind2@ncsu.edu

Kemafor Anyanwu
Department of Computer Science

North Carolina State University, Raleigh, USA
kogan@ncsu.edu

ABSTRACT
Flexible exploration of large RDF datasets with unknown relation-
ships can be enabled using ‘unbound-property’ graph pattern queries.
Relational-style processing of such queries using normalized rela-
tions, results in redundant information in intermediate results due
to the repetition of adjoining bound (fixed) properties. Such redun-
dancy negatively impacts the disk I/O, network transfer costs, and
the required disk space while processing RDF query workloads on
MapReduce-based systems. This work proposes packing and lazy
unpacking strategies to minimize the redundancy in intermediate
results while processing unbound-property queries. In addition to
keeping the results compact, this work evaluates RDF queries us-
ing the Nested TripleGroup Data Model and Algebra (NTGA) that
enables shorter MapReduce execution workflows. Experimental re-
sults demonstrate the benefit of this work over RDF query process-
ing using relational-style systems such as Apache Pig and Hive.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

Keywords
MapReduce; RDF Graph Pattern Matching; Unbound-property

1. INTRODUCTION
MapReduce [3] based parallel data processing platforms such as

Hadoop [4], Hive [5], and Pig [7] are being leveraged across en-
terprises to analyse, visualize, and gain insight into high volumes
of (semi) structured data produced by data-intensive applications.
Exploration of such large scale datasets often requires support for
flexible querying based on unknown relationships. In the context of
Semantic Web data, unbound-property triple patterns can be used to
query unknown relationships (“Scientists related to the same city”),
partially known relationships (“Proteins related via some kind of in-
teraction”), or ‘don’t care’ relationships (“Anything related to Bac-
teria A”) that may be useful in data-integration scenarios.

Relational-style MapReduce platforms such as Hive and Pig al-
low users to express data processing tasks using high-level query
primitives, which are translated into logical plan, physical plan, and
a sequence of MapReduce (MR) cycles (an MR execution work-
flow). Complex tasks such as processing RDF graph pattern queries
typically involve a sequence of joins over thin relations to reassem-
ble related triples. Such join-intensive workloads result in long exe-
cution workflows with multiple phases of I/O materialization, sort-

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Sub1 Prop1 Obj1 Prop2 Obj2 Prop3 Obj3

&Off1 vendor &V1 price 1008 product &Pr1

&Off1 vendor &V1 price 1008 validFrom 07/..

&Off1 vendor &V1 price 1008 vendor &V1

&Off1 vendor &V1 price 1008 price 1008

… … … … … … …

Redundancy in Intermediate Results of Stp2

(prop=vendor)T ⋈ (prop=price)T ⋈ T

SELECT * WHERE {
 ?review reviewFor ?product .
 ?review reviewer ?rev .
 ?offer vendor ?vendor .
 ?offer price ?price .
 ?offer ?p ?product . }

Stp1

Stp2

Unbound-property Query Q1:
Unknown property connecting
Offers and Products

Figure 1: (a) Example unbound-property graph pattern query
(b) Star-join result of Stp2 containing redundant information

ing, and data transfer costs. Additionally, the output of each MR
cycle is written onto the Hadoop Distributed File System (HDFS)
and read back in the subsequent cycle. This overhead is signifi-
cant in the case of relational-style processing of unbound-property
graph pattern queries using normalized relations.

Q1 in Fig. 1 is an unbound-property graph pattern query with
two star subpatterns Stp1 and Stp2 corresponding to a Review
and a product Offer respectively. The subpattern Stp2 contains an
unbound-property triple pattern (?offer, ?p, ?product) that speci-
fies an unknown relationship between offer and a product. Stp2 can
be evaluated over a triple relation T using a set of relational joins
(Tvendor 1 Tprice 1 T), where Tvendor (Tprice) represents the
subset of triples in T with the property type vendor (price). The
join result of Stp2 contains redundant information related to the
bound properties vendor and price, for each triple that matches the
unbound-property triple pattern. The redundancy factor in the in-
termediate results is proportional to the arity and size of the bound-
property component and the cardinality of the join involving the
unbound-property. Such redundancy negatively impacts the disk
I/O, network transfer costs, and the total disk space required for
successful completion of a MapReduce data processing task. This
work proposes strategies to enable efficient management of inter-
mediate results while processing unbound-property graph pattern
queries on MapReduce. The strategies compliment a previous ef-
fort using the Nested TripleGroup Data Model and Algebra [8, 6,
9] (NTGA) that reduces the I/O footprint of RDF query workloads.

2. APPROACH
NTGA exploits the fact that subgraphs matching ALL star sub-

patterns in a query can be computed using a single MR cycle by
a GROUP BY operation on the subject column of the triple relation.
This eliminates the need for multiple MR cycles (one for each star
subpattern) that are required to evaluate multiple star subpatterns
using relational-style joins. A query with n star subpatterns re-
quires n MR cycles using NTGA as opposed to (2n-1) cycles us-
ing the relational approach. The grouping-based approach results in
‘groups of triples’ or TripleGroups that are ‘content-equivalent’(∼=)

169

TG_Load(T)
 (Load triples)

TG_GroupBy(TQ)

(Group triples based on Subject column)

TG_RelaxGrpFilter(TG, {reviewFor, reviewer} OR {vendor, price, ?p})
 (Structure-based Filtering)

TQ

TG = {tg1, tg2}
 (&Rev1, reviewFor, &Pr1),
 (&Rev1, reviewer, Reviewer1),

 (&Off1, vendor, &Vend1),
 (&Off1, price, 1008),
 (&Off1, product , &Pr1)
 (&Off1, validFrom, 07/11/2012)

tg2=

tg1=

 TG_UnbJoin (…)
(Join between TripleGroups with Lazy Unpacking)

TG{vendor, price, ?p} , TG{reviewFor, reviewer}

≅

(&Off1, vendor, &Vend1, price, 1008, product, &Pr1)
(&Off1, vendor, &Vend1, price, 1008, validFrom, 07/11/…)
(&Off1, vendor, &Vend1, price, 1008, vendor, &V1)
(&Off1, vendor, &Vend1, price, 1008, price, 1008)

≅ (&Rev1, reviewFor, &Pr1, reviewer, Reviewer1)

Consider triple relation T and query Q1 with star-patterns stp1 = {reviewFor,reviewer}
and stp2= {vendor, price, ?p}

unpack({vendor, price}, {?p})(TG) = {tg2a, tg2b , tg2c , tg2d}
{(&Off1, vendor, &V1),
 (&Off1, price, 1008),
 (&Off1, product, &P1)}

{(&Off1, vendor, &V1),
 (&Off1, price, 1008),
 (&Off1, validFrom, 07/11/..)}

{(&Off1, vendor, &V1),
 (&Off1, price, 1008),
 (&Off1, vendor, &V1)}

{(&Off1, vendor, &V1),
 (&Off1, price, 1008),
 (&Off1, price, 1008)}

tg2a= tg2b= tg2d= tg2c=

Figure 2: NTGA-based processing of an unbound-property
query Q1 over a triple relation T

to the n-tuples that result from relational joins. This grouping phase
is followed by a filtering step to retain triplegroups that satisfy the
join structures (the set of property types) for at least one of the star
subpatterns in the query. NTGA operators relevant to this discus-
sion include TG_GroupBy (groups the triple relation on the Subject
column), TG_GroupFilter (retains triplegroups that satisfy the
specified structural constraints), and TG_Join (joins triplegroups).

For unbound-property queries, NTGA produces compactly ‘packed’
triplegroups that implicitly represent the bound-property pattern
combinations with each triple matching the unbound-property triple
pattern. For example, triplegroup tg2 in Fig.2 implicitly repre-
sents 4 n-tuples that form the star-join result of Stp2. However,
structure-based filtering using the TG_GroupFilter assumes a set
of bound properties, and needs to be ‘relaxed’ to allow valid matches
to unbound-property star subpatterns. We introduced special oper-
ators, (i) TG_RelaxGrpFilter to retain triplegroups with a non-
empty subset of triples that match the bound properties in a star
subpattern (may contain triples with other property types). For ex-
ample, triplegroup tg2 in Fig.2 contains matches to the set of bound
properties {vendor, price} and is a valid match, and (ii) unpack to
extract subsets of triples in a triplegroup that match the different
pattern combinations corresponding to the unbound-property star
subpattern. Triplegroup tg2 in our example is unpacked into 4 per-
fect triplegroups (each ∼= to one of the the 4 n-tuples produced us-
ing the relational join). In order to minimize the redundancy factor
in intermediate results, we lazily unpack the triplegroups only when
absolutely necessary. We propose lazy map-side unpacking and
lazy map-side partial unpacking strategies that unpack the triple-
groups only in the MR cycle that processes the join on the unbound-
property pattern (using the TG_UnbJoin operator).

3. EXPERIMENTAL EVALUATION
The proposed packing and unpacking strategies were integrated

into RAPID+(NTGA-based extension of Apache Pig) [6]. The
performance of RAPID+ was compared with two relational-style
MapReduce systems - Apache Pig and Hive, both with tuple-based
algebra. Experiments were conducted on NCSU’s VCL1 (each
cluster node with dual core Intel X86 machine, 2.33 GHz proces-
sor speed, 4G memory) using Pig release 0.10.0, Hive 0.8.1 and
Hadoop 0.20.2. Synthetic benchmark BSBM [2] and real-world
DBPedia Infobox [1] datasets were used for evaluation. This sec-

1
http://vcl.ncsu.edu/

(a) (b)

(c) (d)

0

100

200

300

400

Q2-3bnd Q2-4bnd Q2-5bnd Q2-6bnd

H
D

FS
 R

e
ad

s
(i

n
 G

B
)

BSBM-500K: 43GB, 20-node

Pig Hive NTGA

0

100

200

300

Q2-3bnd Q2-4bnd Q2-5bnd Q2-6bnd

H
D

FS
 W

ri
te

s
(i

n
 G

B
)

BSBM-500K: 43GB, 20-node

0

500

1000

1500

2000

2500

3000

3500

Q2-3bnd Q2-4bnd Q2-5bnd Q2-6bnd

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

ec
s)

BSBM-500K: 43GB, 20-node

Pig Hive packOpt unpackOpt

0

1000

2000

3000

4000

5000

6000

22GB 43GB 86GB
Query Q2-3bnd, 10-node

Figure 3: A comparison of HDFS reads and HDFS writes
with varying size of bound-property component in unbound-
property queries using relational and NTGA-based processing

tion provides a subset of the evaluation results. Additional details
about the evaluated queries can be found on the project website2.

Fig. 3 presents the results for BSBM-500K (43GB: 500K Prod-
ucts, ≈ 175M triples) on a 20-node Hadoop cluster. Test queries
involved two star subpatterns with 1 unbound-property and num-
ber of bound-property triple patterns varying from 3 (Q2_3bnd) to
6 (Q2_6bnd) respectively. In general, the increase in the number
of bound-property components results in a gradual increase in the
size of reduce output for Pig and Hive, since they produce all pos-
sible combinations of the bound-component with each triple that
matches the unbound-property pattern. The relational approaches
produce 10 such combinations for the test queries (relational ar-
ity of the subgraph matching the unbound-property subpattern is
10), impacting the total HDFS reads / writes, and overall perfor-
mance. However, the NTGA approaches compactly capture all the
required combinations, resulting in approx. 80 to 86% less HDFS
writes than both Hive and Pig for the test queries.

4. CONCLUSION
We presented an approach to pack and lazily unpack intermedi-

ate results of unbound-property graph pattern queries to minimize
the redundancy in intermediate results while processing MapRe-
duce execution workflows. Experimental evaluation confirms that
the proposed strategies reduce the I/O and network footprint, which
can allow more flexible exploration of very large datasets.

Acknowledgements: This work was partially funded by NSF
grants IIS-0915865 and IIS-1218277.

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.

Ives. Dbpedia: A nucleus for a web of open data. In ISWC/ASWC,
pages 722–735, 2007.

[2] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. IJSWIS,
5(2):1–24, 2009.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Comm. ACM, pages 107–113, 2008.

[4] Apache Hadoop. http://hadoop.apache.org/.
[5] Apache Hive. http://hive.apache.org/.
[6] H. Kim, P. Ravindra, and K. Anyanwu. From SPARQL to MapReduce:

The Journey Using a Nested TripleGroup Algebra. VLDB, 4(12), 2011.
[7] Apache Pig. http://pig.apache.org/.
[8] P. Ravindra, H. Kim, and K. Anyanwu. An intermediate algebra for

optimizing rdf graph pattern matching on mapreduce. The Semantic
Web: Research and Applications, pages 46–61, 2011.

[9] P. Ravindra, H. Kim, and K. Anyanwu. To nest or not to nest, when
and how much: Representing intermediate results of graph pattern
queries in mapreduce based processing. In SWIM, pages 5:1–5:8,
2012.

2
http://research.csc.ncsu.edu/coul/RAPID/WWW2013

170

