
REDACT: A Framework for Sanitizing RDF Data

Jyothsna Rachapalli, Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani Thuraisingham
The University of Texas at Dallas

Richardson, Texas, USA
{jxr061100, vvk072000, muratk, bxt043000}@utdallas.edu

ABSTRACT
Resource Description Framework (RDF) is the foundational
data model of the Semantic Web, and is essentially designed
for integration of heterogeneous data from varying sources.
However, lack of security features for managing sensitive
RDF data while sharing may result in privacy breaches,
which in turn, result in loss of user trust. Therefore, it is
imperative to provide an infrastructure to secure RDF data.
We present a set of graph sanitization operations that are
built as an extension to SPARQL. These operations allow
one to sanitize sensitive parts of an RDF graph and further
enable one to build more sophisticated security and privacy
features, thus allowing RDF data to be shared securely.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.4.6 [Operating Systems]: Security and
Protection—Access Control

Keywords
SPARQL; Sanitization; Access Control; RDF; Provenance

1. INTRODUCTION
RDF is the key to the Semantic Web vision of a global

database formed by seamless integration of various data
sources. Although such data integration will lead to an un-
precedented wealth of knowledge, RDF does not provide any
means to securely share data. We illustrate this with a moti-
vating scenario: Assured Information Sharing (AIS) refers
to organizations sharing information while enforcing poli-
cies/procedures so that the integrated data can be queried
securely to extract nuggets. An AIS system integrating data
sources from agencies such as the Army, Navy, Air Force, etc.
is critical as it may contain sensitive information. While the
different agencies have to share data, they need to do so in
a secure manner by sanitizing the sensitive data. Although
RDF provides an elegant solution for data integration, it
falls short in providing a means for sanitization. We there-
fore present a tool REDACT (Rdf EDiting AndConcealing
Tool), which will help protect data privacy and enable se-
cure sharing of sensitive RDF data by means of RDF graph
sanitization operations. Our Contributions: (a) We ex-
tend SPARQL with a set of fundamental graph sanitization

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

operations to secure RDF. (b) We formalize this language
extension using denotational semantics, which can be found
in our technical report [4]. (c) We present empirical results
showing the performance of the sanitization operations.

2. SPARQL LANGUAGE EXTENSION
FOR GRAPH SANITIZATION

A sensitive resource in an RDF graph can be a data value
or a resource node, a class of data values or resource nodes,
an edge connecting two nodes, a path containing multi-
ple nodes connected by edges, etc. We present a set of
corresponding graph sanitization operations namely, Sani-
tize Node (SNode), Sanitize Edge (SEdge), Sanitize Path
(SPath), etc. The SPARQL sanitization queries contain-
ing the sanitization operations when run on an RDF graph,
transform only the sensitive resource described by the LHS
of the Sanitization operation (as shown in example queries
Q1-Q6) and the remaining triples of the graph stay un-
changed. In the following, we illustrate our sanitization
operations on an example provenance [3] RDF graph from
healthcare domain captured using Open Provenance Model
Vocabulary [2]. The purpose of the SNode operation is to
sanitize and protect sensitive data values or resources such
as SSN, Secret service agents, etc. An example SPARQL
query Q1 that sanitizes the object part of a sensitive triple
and transforms the SSN value from “123-45-678” to “XXX”
is shown in Figure 1. If one needs to conceal all SSN values
of a graph, one may use the variation of SNode shown in Q2,
where the sensitive resource(s) is represented by a suitable
triple pattern. However, if one needs to conceal the SSN
values of a class of individuals, such as Physicians, then one
may use the variation of SNode shown in Q3.

Figure 1: SNode

Q1: SELECT ?x ?y ?z
WHERE {(Patient1 hasSSN "123-45-678") SNode (?x ?y ?z)}

Q2: SELECT ?x ?y ?z
WHERE {(?s hasSSN ?o) SNode (?x ?y ?z)}

Q3: SELECT ?x ?y ?z
WHERE {(?s rdf:type Physician ?s hasSSN ?o) SNode (?x ?y ?z)}

157

The operation SEdge is designed to protect an edge along
with its two nodes. The query Q4 sanitizes a sensitive rela-
tionship by hiding the edge along with its two nodes, and is
illustrated in Figure 2. In addition, SEdge supports saniti-
zation of a sensitive relationship of a class of individuals as
shown in query Q5. The operation SPath is designed to pro-
tect a path (subgraph) containing multiple nodes connected
by edges, and can be represented using a path pattern [1].
Query Q6 uses SPath to hide the provenance of PatientFile1.
This query consistently sanitizes the sensitive subgraph rep-
resented by the path pattern on the LHS of the SPath op-
eration, and the rest of the graph remains unchanged.

Figure 2: SEdge

Q4: SELECT ?x ?y ?z
WHERE {(Surgeon1 hasId 978321) SEdge (?x ?y ?z)}

Q5: SELECT ?x ?y ?z
WHERE {(?s rdf:type Surgeon. ?s hasId ?o) SEdge (?x ?y ?z)}

Q6: SELECT ?x ?y ?z
WHERE {(PatientFile1 [wasDerivedFrom]+ ?o) SPath (?x ?y ?z)}

3. ARCHITECTURE AND PERFORMANCE
In Figure 3, we show the architecture of a prototype sys-

tem that uses graph sanitization to protect underlying sen-
sitive RDF data. A querying user writes a query (SPARQL)
and submits it to the user interface. The user interface for-
wards it to the SPARQL query engine and also forwards the
query along with the user information to the policy eval-
uator (as depicted by 2b). Once the query engine receives
the query, it performs computation on the data stored in the
RDF store. It then returns the resulting graphGq to the pol-
icy evaluator (as depicted by 5). The Policy evaluator now
computes a set of disjoint applicable policies from the orig-
inal policy set based on the three aforementioned inputs it
receives. Policies are called disjoint when the resources pro-
tected by them are non-overlapping. We use disjoint policies
in order to avoid side effects such as concurrent sanitization.
Next, an optimal set of policies is obtained from the dis-
joint applicable policy set, under the policy author defined
risk and utility constraints, using a dynamic programming
algorithm [4]. An optimal set of policies guarantees that
one can obtain the right mix of usability after sanitization,
while maintaining the risk value below the specified thresh-
old. Subsequently, the policies in the optimal set are parsed
and transformed into corresponding SPARQL sanitization
queries such as SNode, SEdge, etc. Once the list of sani-
tization queries is obtained, we then apply them on to the
RDF graph and return the sanitized graph to the querying
user. We now present results of experiments that were con-
ducted to evaluate the performance and scalability of the
sanitization operations. The datasets used for evaluation
were Twitter and U.S. Securities and Exchange Commis-
sion (SEC), each containing at most 3M and 1.8M triples
respectively. It can be seen from Figure 4 that the time to

Figure 3: Prototype System Architecture

 200
 400
 600
 800

 1000
 1200

 1e+06 2e+06 3e+06S
an

iti
za

tio
n

T
im

e
(s

ec
)

Graph Size (No. of Triples)

Sanitization Operations - Twitter

SNode
SEdge
SPath

 100
 200
 300
 400
 500
 600

 500000 1e+06 1.5e+06 2e+06S
an

iti
za

tio
n

T
im

e
(s

ec
)

Graph Size (No. of Triples)

Sanitization Operations - SEC

SNode
SEdge
SPath

Figure 4: Performance on different datasets

execute the sanitization operations increases as the dataset
size increases. However, such an increase is not linear as it
involves a multitude of variable conditions such as the con-
nectivity of the input resource, nature of the resource being
protected by the policy, etc. Additionally, operation SNode,
requires a shorter execution time when compared with more
complex operations such as SPath.

4. CONCLUSION
Using REDACT, Semantic Web applications can secure

underlying RDF data with graph sanitization operations.
Further, they can build more sophisticated security features,
as illustrated with the prototype system architecture. Fi-
nally, the formal underpinning using denotational semantics
makes REDACT a natural extension of SPARQL.

5. ACKNOWLEDGMENTS
This work was partially supported by Air Force Office

of Scientific Research MURI Grant FA9550-08-1-0265 and
FA9550-12-1-0082, National Institutes of Health Grants 1R0-
1LM009989 and 1R01HG006844, National Science Founda-
tion (NSF) Grants Career-CNS-0845803, CNS-0964350, CNS-
1016343, CNS-1111529, CNS-1228198 and Army Research
Office Grant W911NF-12-1-0558.

6. REFERENCES
[1] S. H. Garlik, A. Seaborne, and E. Prud’hommeaux.

SPARQL 1.1 Query Language.

[2] O. Hartig and J. Zhao. Provenance Vocabulary Core
Ontology Specification. Change, (July), 2010.

[3] L. Moreau. The foundations for provenance on the web.
Found. Trends Web Sci., 2, Feb. 2010.

[4] J. Rachapalli, V. Khadilkar, M. Kantarcioglu, and
B. Thuraisingham. REDACT: A Framework for
Sanitizing RDF Data. http://goo.gl/wT38D.

158

http://goo.gl/wT38D

	Introduction
	SPARQL language extensionfor Graph Sanitization
	Architecture and Performance
	Conclusion
	ACKNOWLEDGMENTS
	References

