
A Framework for Self-descriptive RESTful Services

Luca Panziera
University of Milan - Bicocca

Department of Computer Science, Systems and
Communication (DISCo)

Viale Sarca 336/14, 20126
Milan, Italy

panziera@disco.unimib.it

Flavio De Paoli
University of Milan - Bicocca

Department of Computer Science, Systems and
Communication (DISCo)

Viale Sarca 336/14, 20126
Milan, Italy

depaoli@disco.unimib.it

ABSTRACT
REST principles define services as resources that can be
manipulated by a set of well-known methods. The same
approach is suitable to define service descriptions as resources.
In this paper, we try to unify the two concepts (services and
their descriptions) by proposing a set of best practices to build
self-descriptive RESTful services accessible by both humans
and machines. Moreover, to make those practices usable with
little manual effort, we provide a software framework that
extracts compliant descriptions from documents published on
the Web, and makes them available to clients as resources.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services; D.2.11 [Software
Engineering]: Software Architectures—Languages (e.g., de-
scription, interconnection, definition)

Keywords
Web services; REST; Service description; Information extrac-
tion; Semantic Web

1. INTRODUCTION
The number of Web APIs that more or less follow the

principles of REST increased dramatically in recent years
[14]. The reason for this wide adoption can be seen in the
direct use of HTTP [6], the native protocol for the Web, which
makes RESTful services more Web-oriented than classical
Web Services, which exploit SOAP as additional protocol [23,
28]. Moreover, the well-known semantics of HTTP methods
and the use of URIs as endpoints to identify and access
services as resources reduce the learning curve compared
to WSDL-based services that define dedicated interfaces.
However, REST principles include HATEOAS (hypermedia
as the engine of application state) as control mechanism,
which is often misused or neglected by available services.

A limit of the RESTful style is that the issue of describing
services is not explicitly addressed. The definition of rich
descriptions including non-funcional properties (NFPs) is
crucial to discover services that meets given requirements
[22]. Examples of NFPs and their relevance are: licensing
restrictions on data returned by a service is to be considered

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

to prevent illegal use; service usage limits, such as number
of requests per day, should be specified to tell Web devel-
opers the correct use of a service; Quality of Service (QoS)
properties should be advertised to support a correct design
of composite services.

In the literature, some standards, such as WADL [9] and
WSDL 2.0 [3], and Semantic Web models for RESTful ser-
vices, such as hRESTS/MicroWSMO [11] and SA-REST [7],
have been proposed to enable for rich descriptions, but very
few descriptions compliant with these proposals are actually
available on the Web. Moreover, few descriptions compliant
to these models are available as resources according to the
REST principles.

Currently, information about services is dispersed over sev-
eral Web sources. Providers publish descriptions of their own
services as HTML pages in which the information is published
in natural language. More structured descriptions are avail-
able in Web API repositories, such as ProgrammableWeb1, or
specialized wikis for developers. In addition, third-party mon-
itoring websites, such as API status2, provide information
about response time and availability of popular services. All
information is provided in natural language, hence suitable
for humans, but more difficult to understand by machine.
Moreover, without tools, the manual discovery and collection
of dispersed information might become very difficult.

The aim of this paper is to discuss a set of best practices
and propose a framework to collect information on the Web
to semi-automatically generate complete and up-to-date de-
scriptions of services as RESTful services. Information on
services are extracted from provider’s documentation and
trustworthy third-party sources. The resulting descriptions
are published as resources associated with services to make
them self-descriptive. The final goal is to provide descrip-
tions that support service discovery by humans as well as by
automatic tools. The proposal is based on PCM-lite, a meta-
model for describing functional and non-functional service
properties, and a REST-compliant interaction protocol to
manage (accessing and modify) service descriptions.

The paper is structured as follows. In section 2, the best
practices to make a RESTful service self-descriptive are pro-
vided. Then, the framework architecture and the techniques
adopted to extract service information is described in section
3. Section 4 discusses the lesson learned by implementing
self-descriptive services in practices through the proposed
framework. Related work is discussed in section 5. Finally,
we draw conclusions and discuss future work in section 6.

1http://www.programmableweb.com
2http://api-status.com/

1407

2. DESCRIPTIONS AS A SERVICE
The discovery of RESTful services that offer public func-

tionalities on the Web is an important issue to be addressed.
Despite the availability of several standard languages and
models, information about services is dispersed and heteroge-
neous. Service providers publish documentation as common
HTML Web pages. Also third-party Web sources, such as
wikis, Web APIs repositories, and monitoring services provide
additional descriptions as HTML or semi-structured docu-
ments, such as XML and JSON. To give an example, descrip-
tions of Twitter REST APIs are available through provider
documentation web pages3, in the ProgrammableWeb reposi-
tory, as HTML page4 and Atom feeds provided according to
REST5, and through API status monitoring service as JSON
or XML document that contains real-time service perfor-
mances. These documents provide information about service
functionalities, as well as non-functional characteristics, such
as data licensing, usage limits and response time, that need
to be described to support users to choose among a number
of similar services that are currently available on the Web
(e.g., geolocation and mapping services).

Information is mostly in natural language that can be
easily interpreted by humans, but cannot be easily evaluated
by machines. Even if the information is provided by semi-
structured documents there are problems due to: (i) hetero-
geneous data formats; (ii) different vocabularies that prevent
common tools to identify synonyms and homonyms; and (iii)
adoption of models that are not compliant with service de-
scription standards, such as WSDL 2.0 or WADL. Moreover,
the manual discovery of such a dispersed knowledge through
standard Web search engines might be prohibitive.

To address these issues, we introduce the concept of self-
descriptive RESTful service, a service that represents itself
according to REST principles, to enable effective discovery
by humans and machines. A self-descriptive RESTful service
offers a unique URI which identifies a root resource as a
starting point for discovering all its resources by exploiting
HATEOAS principle. To reach the goal we propose five best
practices for representing functional and non-functional char-
acteristics of a service, and provide them through browsable
descriptions.

Best Practice 1: Information modelling
RESTful services need to be described according to a shared
and formal model that specifies functional and non-functional
properties.

The definition of a sound model for representing service
properties is fundamental for allowing machines and humans
to understand and manipulate descriptions exploiting the
same syntax and semantics.

Best Practice 2: Semantic data model
Data that describes service properties need to be represented
according to RDF.

RESTful services can return representations in any format,
which is an advantage for developers and providers, because
they can adopt the most suitable format according to specific
domain, context and needs. However, this heterogeneity
turns to be a disadvantage for machines and users, because it

3https://dev.twitter.com/docs/api/1.1
4http://www.programmableweb.com/api/twitter
5http://api.programmableweb.com/

reduces interoperability in service composition. This aspect
becomes crucial when dealing with service discovery, since
descriptions need to be compared and composed to evaluate
and match a service with a user request. If descriptions are
expressed in RDF, both syntax and semantic interoperability
can be addressed. The former by adopting a shared semantic
data model, the latter by enabling the use of Semantic Web
tools, such as reasoners, which can make inference, and
matchmakers [24], which are able to compare descriptions
referring to different domain ontologies. It should be noted
that we propose RDF as a constraint for representing service
properties, but not for resources that implement service
functionalities.

Best Practice 3: Common vocabulary
Property values should represent concepts that are linked to
concepts available on the Linking Open Data Cloud.

In recent years, we have witnessed the spread of the phe-
nomenon known as the Linking Open Data Cloud. The
Linking Open Data Cloud is the result of the interconnec-
tion between datasets published according to Linked Data
principles [10], which is a set of best practices that share
some common characteristics with REST, namely: (i) iden-
tify concepts by URI, (ii) use HTTP to look up concepts
descriptions and (iii) include links to other URIs in docu-
ments in order to discover other concepts. The latter is a way
to implement the HATEOAS principle (see Best Practice 5)
[18]. The most popular Linked Data datasets are DBpedia
[2] and Yago [25], which are the semantic representation of,
respectively, Wikipedia and Wordnet [5]. Therefore, they
refer to general-purpose ontologies to represent a vast por-
tion of human knowledge. These two datasets are central
hubs for hundreds of other datasets that define concepts for
specific domains (geography, music, etc.). If property values
are defined as concepts available on the Linking Open Data
Cloud, they represent well-known concepts, which means
preventing ambiguity, synonymy and homonymy, and thus
facilitating evaluations by automatic tools. Relations be-
tween datasets, defined as links, allow users and machines
to discover additional information related to concepts that
represent property values.

Best Practice 4: Human interpretability
A natural language description, or label, must be associated
with each service property.

Property definitions in pure RDF, without natural lan-
guage descriptions, allow machine to manage information,
but reduce human readability. To address this issue, a
rdfs:label attribute or a rdfs:comment attribute should be
specified for each service property.

Best Practice 5: RESTful descriptions
Service must provide descriptions as aggregations of proper-
ties published as RESTful resources.

Descriptions can be designed and implemented as special
resources, which means to reduce the difference between a
service and the associated descriptions. The implementation
of the REST architectural style via HTTP methods enables
the use of the same models and tools to manage both services
and descriptive data, with a clear advantage in simplicity
and interoperability. In particular, the use of Liked Data
in combination with RDF provides a standard format for

1408

hyperlinks to support the HATEOAS principle. The rest of
this section discusses some descriptions samples.

2.1 RESTful descriptions
According to the first practice, we need to adopt a model

and a language to express properties and descriptions. A
good candidate is the Policy Centred Meta-model (PCM)
[4], which was designed by our research group to support
semantic descriptions of NFPs. The high expressiveness of
the PCM allows service providers to define NFPs that refer
to complex business domains. However, PCM flexibility
and completeness have requested the definition of several
concepts that makes it difficult to master all the features
to deliver complete descriptions, which, in addition, require
large computational resources to be processed by reasoners
[16, 21, 19].

In this paper, we introduce PCM-lite, whose features
are: (i) full support to properties (both functional and non-
functional); (ii) expressive, but simpler than PCM; and (iii)
data format independence.

Policy

Property

UnitOperator Value

*

1..*

hasProperty

*

1..*0..1 0..1

** hasUnithasOperator

hasRelation

Figure 1: PCM-lite formalization

The semantics of the PCM-lite is shown in figure 1 as
UML class diagram. The lightweight meta-model has the
following characteristics. Each service can be described by
one or more policies that collects a set of properties into
a single entity. Properties represent either functional or
non-functional characteristics. We do not make an explicit
distinction because this classification is not explicitly defined
in literature [4], and may change according to subjective
evaluations or usage context. Anyway, for the purposes of
the model, this classification is unnecessary.

A property can have a relation with one or more values.
The relation can be a generic (e.g., “data format has value
JSON”), refers to specific resource feature (e.g., “resource has
method GET and PUT”) or customized by users. Moreover,
optional unit can be associated with properties for defining
numeric properties (e.g., “usage limit: 500 requests per day”).
Finally, a operator that can be a logic quantifier (∀, ∃), for a
set of symbolic values, or defines single numeric values, with
=, unbounded intervals, with ≤ and ≥, or bounded intervals
with range (e.g, “response time: ≤ 200 ms”). Finally, PCM-
lite is defined by an abstract model that can be implemented
in different languages, such as RDF, XML and JSON. In this
paper we adopt RDF.

For the lack of space, we illustrate PCM-lite by means of
some examples. The next listings show policies and properties
as a resource describing the Foo service by RDF documents

expressed in N-Triples [8]6. These descriptions should be
returned by the Foo REST API if the service will be self-
descriptive according to the proposed best practices and
resemble the information available on the its real documen-
tation.

Listing 1 shows a policy composed of four properties. Two
of them are resources, which provides main service function-
alities, and two NFPs, namely data license and response time,
which describe the service. To satisfy the fourth practice,
label and description in natural language are provided. Ac-
cording to the fifth practice, this policy is identified by the
URI https://api.Foo.com/twPolicy.

Listing 1: A PCM-lite policy for Foo REST APIs
@pref ix : <https :// api . Foo . com/>
@pref ix p l : <http ://pcm . d i s co . unimib . i t /pcm− l i t e />
. . .
: twPol icy rd f : type pl : p o l i c y .
: twPol icy r d f s : comment
”The REST API prov ides s imple i n t e r f a c e s f o r most
Foo f u n c t i o n a l i t y . ”@en .
: twPol icy r d f s : l a b e l ”Foo REST API”@en .
: twPol icy p l : hasProperty : r e source1 .
: twpo l i cy p l : hasProperty : r e source2 .
. . .
: twPol icy p l : hasProperty : d a t a l i c e n s e .
: twPol icy p l : hasProperty : responset ime .

In listing 2, a resource (resource1) is further specified
by two values: :statuses/mentions_timeline, which rep-
resents the URI of the resource, and dbpedia:HTTP_GET,
which states that the GET method is available for that re-
source. The GET method is a well-known concept linked
to a DBpedia concept, according to the third practice. The
resource description is accessible and modifiable at https:

//api.Foo.com/resource1, according to the fifth practice.

Listing 2: A property as a resource for Foo REST
APIs
@pref ix dbpedia : <http :// dbpedia . org / r e sou r c e/>
. . .
p l : hasValue rd f : type p l : hasRe lat ion .
p l : hasMethod rd f : type pl : hasRe lat ion .
. . .
: r e source1 rd f : type pl : property .
: r e source1 r d f s : comment
”Returns the 20 most r ecent mentions (tweets
conta in ing a users ’ s @screen name) f o r the
authen t i ca t i ng user . ”@en .
: r e source1 pl : hasValue
: s t a t u s e s /ment i ons t ime l ine .
: r e source1 pl : hasMethod dbpedia :HTTP GET .

Finally, the listing 3 shows a NFP as a resource identified
by https://api.Foo.com/responsetime that represents the
service response time. The document specifies that the
response time is less than 0.153 seconds. “Second” and “less
than” are well-known concepts, therefore are represented as
DBpedia concepts.

Listing 3: Response time property as a resource for
Foo REST APIs
@pref ix dbpedia : <http :// dbpedia . org / r e sou r c e/>
. . .
: r e sponset ime rd f : type p l : property .
: responset ime rd f s : l a b e l

6N-ary relations are defined according to the third
use case available in the W3C documentation,
http://www.w3.org/TR/swbp-n-aryRelations/

1409

”Se rv i c e response time ”@en .
: responset ime pl : hasOperator dbpedia : Less−than .
: responset ime pl : hasValue ”0 . 1 53” .
: responset ime pl : hasUnit dbpedia : Second .

3. THE FRAMEWORK
In the previous section, we proposed a set of best practices

that defines the model, data format and the vocabulary to be
adopted for defining service descriptions, and the method for
publishing and managing them as resources. In order to mak-
ing feasible the practices, we propose a software framework
that: (i) semi-automatically extracts service information
from provider documentation and third-party service infor-
mation disperse over the Web and (ii) makes the collected
information available as a self-descriptive service.

3.1 Framework architecture
A generic architecture of a self-descriptive RESTful ser-

vice that exploits our framework is shown in figure 2. The
architecture is composed by a REST interface that manages
HTTP messages. The business logic implements the service
functionalities by accessing a database that contains that
state of the entities represented as resources. Our framework
is based on a module called self-description wrapper that can
be considered as a plug-in for generic RESTful services.

Service
Business

Logic

REST Interface

GET http://service.../policy
PCM-lite

Policy

Self-description Wrapper

Policy Factory

URI Solver

REST Interface

Database
Provider

Documentation
Wikis Trusted

Monitors

Figure 2: Self-descriptive REST service architecture

Since the wrapper is designed as RESTful service, there is
a complete platform independence between the wrapper and
the service implementation. Moreover, the additional module
can be easily integrated by implementing a HTTP message
forward through the main REST interface as shown in figure
3. The result is to hide transparency of the plug-in module
behind the main service interface. Finally, the wrapper can
be deployed on an additional host in order to preserve the
performances of the main service.

A URI solver component aims to retrieve or modify the
correct policy or property instance on the base of the re-
quested policy URI. The policy extraction and construction
is performed by the policy factory. In the following subsec-
tions will be explained the approach implemented by the
policy factory, also introduced in [19].

REST Interface

GET http://service.../policy
PCM-lite

Policy

Self-description
Wrapper

GET http://wrapper.../policy

Policy Factory

URI Solver

REST Interface

PCM-lite
Policy

Figure 3: Message forwarding to wrappers

3.2 Property extraction
The service descriptions actually available on the Web

are mainly textual descriptions, published as HTML Web
pages or semi-structured data, such as JSON, XML or XML-
based extensions (e.g., RSS or Atom), provided by Web API
repositories (e.g., ProgrammableWeb) or external monitoring
services (e.g., API status).

Actually, Web pages have a hidden structure that defines
the page layout (e.g., paragraphs, titles, etc.) by HTML
standard tags. Therefore, textual descriptions can be con-
sidered as semi-structured data and the same technique for
property value extraction can be applied.

Such semi-structured documents can be exploited to gen-
erate PCM-lite descriptions by means of Source-to-policy
templates (S2PTs). A S2PT, associated with a source spec-
ifies the properties that will be included in the extracted
policies and, for each property, the process of extraction of
its value. To extract service information a template defines
several XPath7 expressions, that allow for the definition of
paths that identifies portions of XML, HTML and JSON
format.

S2P template

+ policyLabel: Literal/XPath
+ policyDdescription: Literal/XPath Property

+ valueLocation: XPath
+ relation: URI
+ label: Literal/XPath
+ description: Literal/XPath
+ extractionFrequency: Time

Source

+ location: URL
 *

*
 refersTo

*

*
 maps

Figure 4: Formalization of Source-to-Policy Tem-
plates (S2PTs)

The S2PT formalization is represented by the UML class
diagram in figure 4. A template refers to one or more sources
that are identified by an URL and maps a set of properties
that are represented by the following attributes: (i) a XPath
expression that identifies the value location in the document;

7Formalized at: http://www.w3.org/TR/xpath/

1410

(ii) a URI that defines the relation between the property
and the value (e.g., hasValue or hasMethod); (iii) a natural
language label that defines the property name (e.g., “data
license” or “resource”); (iv) a natural language description of
the property; (v) a time interval that defines the extraction
frequency, in order to support dynamic properties such as
response time. Moreover, a S2PT has a label and a comment
that describe the PCM-lite policy. Labels and comments for
policies and properties can be defined manually as literal or
extracted from documents through the definition of XPath
expressions.

According to the formalization in figure 4, a S2PT can
be a description defined in a semi-structured data format,
such as XML or JSON, or in RDF. An example of a XML-
based S2PT for Twitter documentation, defined in HTML,
is presented in listing 4. The XML code shows in detail the
extraction configuration for the resource represented in the
listing 2. The policy factory, according to the extraction
frequency defined in S2PTs, periodically extracts and creates
PCM-lite policies by executing the process shown in figure 5
and represented as activity diagram according to UML 2.

Listing 4: An example of S2PT for extracting Twit-
ter service descriptions from provider documenta-
tion
<?xml ver s i on=”1 .0 ” encoding=”UTF−8”?>
<s2pt : t empla te

xmlns : s2pt=”ht tp : //pcm . d i s co . unimib . i t / s2pt ”
. . . >
<s 2p t : s ou r c e>

<s 2 p t : l o c a t i o n>
h t tp s : //dev . tw i t t e r . com/docs / api /1 .1

</ s 2 p t : l o c a t i o n>
</ s 2p t : s ou r c e>
<s 2p t : p o l i c yLabe l>

/body/div /h1
</ s 2p t : p o l i c yLabe l>

<s2pt :Proper ty>
<s2p t : va lueLoca t i on>

/ tab l e / tbody/ t r / td [1] / a
</ s2pt : va lueLoca t i on>
<s 2 p t : r e l a t i o n>

pl :hasVa lue
</ s 2 p t : r e l a t i o n>
<s 2 p t : l a b e l>Resource</ s 2 p t : l a b e l>
<s 2 p t : d e s c r i p t i o n>

/ tab l e / tbody/ t r / td [2]
</ s 2 p t : d e s c r i p t i o n>
<s2pt : ex t rac t i onFrequency>
24 hours
</ s2pt : ex t rac t i onFrequency>

</ s2pt :Proper ty>

<s2pt :Proper ty>
. . .

</ s2pt :Proper ty>
. . .

</ s2pt : t empla te>

The first phase is the document retrieval. By using the
source location URL defined in the S2PT, the document
that contains the value is retrieved by a HTTP GET. Then,
the document portion extraction is performed by submitting
the retrieved document and the XPath expression associated
with the property to a XPath engine. The result returned
by the engine is a textual portion of document that contains
the property value.

The third process step is the named-entity recognition
(NER) [17]. NER tools are able to identify textual terms that
refers to specific semantic concepts in a domain ontology.

Document
Retrieval

Source document

Source location

XPath expression

Document portion

Entities Domain ontology

XPath
execution

Named-entity
recognition

Entity Selection Property Values

Figure 5: Property value extraction process from
textual and semi-structured data

To give an example, a NER tool can recognize from the
text“Extensible Markup Language”the concept dbpedia:XML
defined in DBpedia. NER can exploit ontologies defined by
domain experts or ontologies already available on the Web.
In our framework, we exploit DBbedia-spotlight [15], a NER
tool that identifies concepts defined by DBpedia in a text.

Finally, entity selection is required to associate concepts
identified by NER with property values. More values can
be extracted from a text, in this phase we need to identify
which are to be associated with a given property. To give an
example, in the text “You are expected to be able to parse
the XML or JSON response payloads” the DBpedia spotlight
can identify the concepts payload and parsing that do not
represent a value of the property “data formats”.

The preliminary step of the entity selection is processing
the property description provided by the S2PT with the
NER tool. The technique adopted is to perform NER on
the property description, defined in the S2PT, and the text
portion that contains the value. Then, the concept that will
be considered a value is the entity in the extracted text that
has a lowest semantic distance (under a particular threshold)
with the concepts identified by the property description. For
semantic distance, the lowest number of relations between not
equivalent concepts defined by the domain ontology graph
is considered. For instance, by referring to the previous
example, XML and JSON are selected because their distance
between the concept DataFormat identified in the property
description “data formats” is lower to the other identified
concepts. The same approach is adopted also to identify
units of measurements.

The architecture of the policy factory is shown in figure 6.
The architecture is composed of three basic elements: data
source manager, property value evaluator and policy builder.

The data source manager has the task of retrieving source
documents. A second task of this module is to signal poten-
tial source faults due to temporary unavailability or removed
documents. The property value evaluator provides func-
tionalities to extract property values and represent them as
semantic concepts. To accomplishing the task, this module
includes a XPath engine and a NER tool. Finally, the pol-
icy builder enacts the process in figure 5 by orchestrating

1411

data source manager and property value evaluator to build
PCM-lite policies.

Policy Factory

Policy
Builder

Data
Source
Loader

Property
Value

Evaluator

Xpath
Engine

NER
Tool

Source
Documents

S2PTs

Domain
Ontology

Figure 6: Policy factory architecture

4. LESSON LEARNED
PCM-lite descriptions and the presented framework have

been tested over the last months to evaluate the proposal.
In this section we discuss the use of self-descriptive RESTful
services by humans and tools, and the (semi-)automatic gen-
eration of descriptions and management by the framework.

4.1 About the best practices
According to the REST principles, service requesters can

access a PCM-lite policy trough a HTTP GET. Then, values
of properties that are relevant for requesters can be retrieved
performing additional GETs by links to properties included
in the policy. According to this protocol, the information
can be discovered in the same way for any service and de-
ployed by any provider. For example, Bing Maps geocode8

and Google geocoding APIs9, that provide similar geocoding
functionalities, need to be compared to understand their
publication policies by a user looking for data with free li-
censing to reuse the information provided. Possible data
licensing descriptions associated with the two services are
shown in listings 5 and 6. A common vocabulary allows users
to compare properties of the two services by accessing to
DBpedia descriptions.

Listing 5: Data licensing property as a resource for
Bing Maps geocode service
: d a t a l i c e n s e rd f : type pl : property .
: d a t a l i c e n s e r d f s : l a b e l ”Data l i c e n s i n g ”@en .
: d a t a l i c e n s e p l : hasOperator dbpedia : F o r a l l .
: d a t a l i c e n s e p l : hasValue dbpedia :EULA .

Listing 6: Data licensing property as a resource for
Google geocoding APIs
: d a t a l i c e n s e rd f : type pl : property .
: d a t a l i c e n s e r d f s : l a b e l ”Data l i c e n s e ”@en .
: d a t a l i c e n s e p l : hasOperator dbpedia : F o r a l l .
: d a t a l i c e n s e p l : hasValue dbpedia : Creative Commons .

To prove that descriptions compliant with the presented
best practices allows machines to perform evaluations on self-
descriptive services, we could exploit the Policy Matchmaker
and Ranker for Web (PoliMaR-Web) tool [21, 19, 20]. The
PoliMaR-Web is a service matchmaker for supporting users
to discovery the best service according to given requirements.

8http://msdn.microsoft.com/en-us/library/ff701715.aspx
9https://developers.google.com/maps/documentation/

The tool is able to match a set of user constraints on ser-
vice properties, defined according to PCM-lite, by combining
mathematical functions and semantic reasoning, therefore
it is able to infer that dbpedia:Creative_Commons is a free
license. In [21], we proved that PoliMaR-Web can be effi-
cient (response time is aligned with an interactive use) and
effective (in terms of precision and recall) to evaluate Web
API descriptions, including RESTful services.

However, some limitations for humans persist despite the
fourth practice constraints the definition of natural language
descriptions associated with properties. The two main limi-
tations concern (i) the description modification by humans
and (ii) data format readability. According to the fifth prac-
tice, the information is made available via HTTP according
to REST principles. Currently, the most common tools
that allows users to access to information available through
HTTP are Web browsers, which was designed to access re-
sources with GET and POST methods, and therefore does
not support fully management of descriptions. Moreover,
data formats that are adopted to define RDF documents,
such as XML, N3, N-Triples and Turtle, do not present de-
scriptions that are very readable for humans. This issue
directly emerge by reading listing 1, 2 and 3.

4.2 About the framework
The self-description wrapper is able to make self-descriptive

every existing service by exploiting existing descriptions.
However, to enable the information extraction, a manual
analysis of sources to define templates that identifies property
values is requested. Even if a template for a source can serve
multiple services (e.g., the template for ProgrammableWeb
supports about 6,000 services to date), such human effort
needs to be reduced to make the approach effective. The
automatic identification of properties is an issue still under
investigation.

In addition, the precision of the NER tools depends on the
domain and adopted techniques [17]. Therefore, the correct
identification of property values is not always guaranteed.
We performed a precision and recall evaluation to verify if
DBpedia spotlight correctly identifies property values. The
test involved the extraction of 1816 property values available
in 500 descriptions provided by ProgrammableWeb. These
precision pe and recall re are evaluated as follow:

pe =
|Cc ∩ Ic|
|Ic|

and re =
|Cc ∩ Ic|
|Cc|

,

where Cc is the set of correct concepts that represent the
extracted values and Ic is the set of concepts extracted.
The identification of correct concepts is implemented by
comparing the NER result with a manual property annotation
that represents the standard goal.

Table 1: Effectiveness of property value extraction
through named entity recognition

Properties pe re

Data formats 0.92 0.91
Licensing 0.79 0.78

Usage Limits 0.45 0.61

Average 0.72 0.77

1412

Precision and recall have been computed for three prop-
erties belonging to different domains. For each property,
the average of precision and recall for each value that refers
to a specific properties have been computed (Table 1). On
data formats, the extraction has a good precision and recall.
Instead, the extraction of usage limits sometimes fails. This
experiment has proven that effectiveness can vary signifi-
cantly. Therefore, the definition of reliable techniques to
perform named entity recognition is still an issue.

5. RELATED WORK
To the best of our knowledge, there are no other approaches

that propose to deliver self-descriptive RESTful services by (i)
collecting disperse information and (ii) providing descriptions
that are usable by humans and machines. However, some of
the aspects addressed in the paper have been treated in the
literature.

In this paper, we suggest to use PCM-lite to represent
service descriptions since semantic models in the literature
show some limitations. The combination between HTML for
RESTful Services (hRESTS) and MicroWSMO [11] permits
providers to bind HTML pages and semantic descriptions.
hRESTS is a micro format that identifies functional prop-
erties in HTML documents. The format defines additional
attributes associated with HTML tags. The hRESTS at-
tributes associate portions of text identified by tags with a
service functionality that is represented as a concept of the
MicroWSMO model.

The result is that hRESTS supports the identification
of properties trough tags that providers must specify in
Web documents based on HTML. In addition, our approach
through templates is not tied to HTML documents and
supports other semi-structured data based on XML and
JSON.

Despite the fact that MicroWSMO supports the definition
of NFPs, the hRESTS limitation is mapping only functional
properties. Moreover, MicroWSMO strictly separates func-
tional properties and NFPs. As discussed in section 2, if a
provider defines a property as non-functional that is consid-
ered functional by users (or viceversa), discovery tools could
consider the property defined in a user request incompara-
ble with the provider description, because the two property
definitions are not instances of the same class.

The Resource Linking Language (ReLL) [1] is a very rich
model that allows providers to represent RESTful services by
combing the advantages of REST and Linked Data. As well
as PCM-lite, ReLL is data format independent and provides
a formal definition of resources and links in order to follow
HATEOAS principle. Unfortunately, the meta-model does
not allow providers to specify NFPs that are key elements to
support users for choosing among similar services available
on the Web (e.g., geolocation and mapping services).

RESTdesc has been proposed in [27] to combine REST
and Linked Data [18], as we suggest with the third prac-
tice. This approach is based on an extension of RDF/N3
descriptions that specifies the service functionalities as a set
of preconditions that, combined with a user request, gen-
erate a specific post condition. A common characteristic
that RESTdesc shares with our framework is the adoption
of vocabularies that can be provided by the Linking Open
Data Cloud. RESTdesc is able to model the behaviour of the
service according to HATEOAS. However, PCM-lite provides

a straightforward user interpretation of properties and does
not require non-standard extensions of RDF/N3.

The second practice that we propose is the adoption of
RDF as semantic data model. JSON-LD [12] is a promising
semantic model that is able to implement truly RESTful
services that support Linked Data. However, in the cur-
rent scenario, we suggest RDF because technologies that are
able to perform advanced semantic evaluations (e.g., reason-
ers) that support JSON-LD do not exist to the best of our
knowledge.

Karma [26] is a tool proposed for integrating RESTful
services with Linking Open Data Cloud. The Karma ap-
proach is to provide RESTful resources defined according to
XML or JSON as Linked Data. Karma extracts information
from structured datasets in order to construct RDF repre-
sentations. However, this approach does not consider that
information about services can be dispersed over the Web
and NFPs are not provided directly by services as resources.
Moreover, most of the information on services is provided as
textual descriptions in partially structured HTML documents.
Finally, Karma does not consider that Web documents can
include information unrelated to services, which means that
service properties should be extracted from portions of struc-
tured documents. We addressed this issue by S2PTs that
support the identification of pertaining information. The
manual work required by S2PT definition is rewarded by
higher effectiveness.

Finally, [13] is the only work that proposes an approach for
extracting service information from RESTful service docu-
mentation. The method composes HTML structure analysis
with natural language processing to deliver a complete auto-
matic technique for extracting information, but it takes into
account only service functionalities, neglecting NFPs.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a set of best practices to build

self-descriptive RESTful services for enabling an effective
service discovery by humans and machines. Moreover, to
make practices usable with little manual effort, we provide
a software framework that extracts compliant descriptions
from disperse service information on the Web, and makes
them available to clients as resources. In such a way, NFPs
are accessible by standard RESTful methods.

PCM-lite descriptions proved to be effective to support
users to discovery services by means of automatic tools.
However, the automatic generation of description is still an
issue since important manual effort is necessary to extract
properties and property values from existing descriptions
on the Web, and name identity recognition requires expert
supervision. We are now working to address these issues.

To become fully compliant with the REST principles we
need to include all the possible methods, so to be able to
completely manage descriptions and services. Moreover,
we should be able to access resources (services and their
descriptions) through regular browsers and HTML pages.
The current Web browsers do not support the full set of
HTTP methods. We will develop plugins to overcome this
limitation and improve human involvement.

1413

7. REFERENCES
[1] R. Alarcón and E. Wilde. From RESTful services to

RDF: Connecting the Web and the Semantic Web.
CoRR, abs/1006.2718, 2010.

[2] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. DBpedia - A
crystallization point for the Web of Data. Web
Semantics: Science, Services and Agents on the World
Wide Web, 7(3):154–165, 2009.

[3] R. Chinnici, J. Moreau, A. Ryman, and
S. Weerawarana. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. Technical
report, W3C, June 2007. Available at
http://www.w3.org/TR/wsdl20/.

[4] F. De Paoli, M. Palmonari, M. Comerio, and
A. Maurino. A Meta-model for Non-functional Property
Descriptions of Web Services. In Proceedings of 6th
IEEE International Conference on Web Services, ICWS
2008, pages 393–400, 2008.

[5] C. Fellbaum. Wordnet. Theory and Applications of
Ontology: Computer Applications, pages 231–243, 2010.

[6] R. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California - Irvine, 2000.

[7] K. Gomadam, A. Ranabahu, and A. Sheth. SA-REST:
Semantic Annotation of Web Resources. Technical
report, W3C, April 2010. Available at
http://www.w3.org/Submission/SA-REST/.

[8] J. Grant and D. Beckett. RDF Test Cases. Technical
report, W3C, February 2004. Available at
http://www.w3.org/TR/rdf-testcases/#ntriples.

[9] M. Hadley. Web application description language
(WADL). Technical report, W3C, August 2009.
Available at http://www.w3.org/Submission/2009/

SUBM-wadl-20090831/.

[10] T. Heath and C. Bizer. Linked data: Evolving the web
into a global data space. Synthesis Lectures on the
Semantic Web: Theory and Technology, 1(1):1–136,
2011.

[11] J. Kopeckỳ, K. Gomadam, and T. Vitvar. hRESTS: An
HTML microformat for describing RESTful Web
services. In Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence and
Intelligent Agent Technology, WI-IAT 2008, pages
619–625. IEEE, 2008.

[12] M. Lanthaler and C. Gütl. On using json-ld to create
evolvable restful services. In Proceedings of the Third
International Workshop on RESTful Design, WS-REST
2012, pages 25–32, 2012.

[13] P. Ly, C. Pedrinaci, and J. Domingue. Automated
information extraction from Web APIs documentation.
In Proceedings of 13th Internationa Conference on Web
Information Systems Engineering, WISE 2012, pages
497–511, 2012.

[14] M. Maleshkova, C. Pedrinaci, and J. Domingue.
Investigating Web APIs on the World Wide Web. In
Proceedings of the IEEE 8th European Conference on
Web Services, ECOWS 2010, pages 107 –114, 2010.

[15] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer.
DBpedia spotlight: shedding light on the web of
documents. In Proceedings of the 7th International

Conference on Semantic Systems, I-Semantics 2011,
pages 1–8, 2011.

[16] S. Mokhtar, A. Kaul, N. Georgantas, and V. Issarny.
Towards efficient matching of semantic Web service
capabilities. In Proceedings of the International
Workshop on Web Services Modeling and Testing,
WS-MATE 2006, 2006.

[17] D. Nadeau and S. Sekine. A survey of named entity
recognition and classification. Lingvisticae
Investigationes, 30(1):3–26, 2007.

[18] K. Page, D. De Roure, and K. Martinez. REST and
Linked Data: a match made for domain driven
development? In Proceedings of the Second
International Workshop on RESTful Design, WS-REST
2011, pages 22–25. ACM, 2011.

[19] L. Panziera, M. Comerio, F. Palmonari, M. De Paoli,
and C. Batini. Quality-driven Extraction, Fusion and
Matchmaking of Semantic Web API Descriptions.
Journal of Web Engineering, 11(3):247–268, 2012.

[20] L. Panziera, M. Comerio, M. Palmonari, C. Batini, and
F. De Paoli. PoliMaR-Web: multi-source semantic
matchmaking of Web APIs. In Proceedings of 13th
Internationa Conference on Web Information Systems
Engineering, WISE 2012, pages 812–814, 2012.

[21] L. Panziera, M. Comerio, M. Palmonari, and
F. De Paoli. Distributed matchmaking and ranking of
web apis exploiting descriptions from web sources. In
Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications, SOCA
2011, 2011.

[22] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: a Research
Roadmap. International Journal of Cooperative
Information Systems, 17(2):223–255, 2008.

[23] C. Pautasso, O. Zimmermann, and F. Leymann.
RESTful Web Services vs. “big” Web Services: Making
the Right Architectural Decision. In Proceedings of the
17th international conference on World Wide Web,
WWW 2008, pages 805–814, 2008.

[24] P. Shvaiko and J. Euzenat. Ontology matching: State
of the art and future challenges. IEEE Transactions on
Knowledge and Data Engineering, 25(1):158 –176,
January 2013.

[25] F. Suchanek, G. Kasneci, and G. Weikum. YAGO: A
large ontology from wikipedia and wordnet. Web
Semantics: Science, Services and Agents on the World
Wide Web, 6(3):203–217, 2008.

[26] M. Taheriyan, C. Knoblock, P. Szekely, and J. Ambite.
Rapidly Integrating Services into the Linked Data
Cloud. In Proceedings of 11th International Semantic
Web Conference, ISWC 2012, pages 559–574, 2012.

[27] R. Verborgh, S. Coppens, T. Steiner, J. Vallés,
D. Van Deursen, and R. Van de Walle. Functional
descriptions as the bridge between hypermedia apis and
the semantic web. In Proceedings of the Third
International Workshop on RESTful Design, WS-REST
2012, pages 33–40. ACM, 2012.

[28] S. Vinoski. Putting the “Web” into Web services:
interaction models, part 2. Internet Computing, IEEE,
6(4):90–92, 2002.

1414

