
Distributed Affordance:
An Open-World Assumption for Hypermedia
Ruben Verborgh

Ghent University – iMinds –
Multimedia Lab

9050 Ghent, Belgium
ruben.verborgh@ugent.be

Michael Hausenblas
DERI, NUI Galway
IDA Business Park

Lower Dangan Galway, Ireland
michael.hausenblas@deri.org

Thomas Steiner
Universitat Politècnica de

Catalunya – Department LSI
08034 Barcelona, Spain

tsteiner@lsi.upc.edu

Erik Mannens
Ghent University – iMinds – Multimedia Lab

Rik Van de Walle
Ghent University – iMinds – Multimedia Lab

ABSTRACT
Hypermedia links and controls drive the Web by transform-
ing information into affordances through which users can
choose actions. However, publishers of information cannot
predict all actions their users might want to perform and
therefore, hypermedia can only serve as the engine of appli-
cation state to the extent the user’s intentions align with
those envisioned by the publisher. In this paper, we intro-
duce distributed affordance, a concept and architecture that
extends application state to the entire Web. It combines in-
formation inside the representation with knowledge of action
providers to generate affordance from the user’s perspective.
Unlike similar approaches such as Web Intents, distributed
affordance scales both in the number of actions and the
number of action providers, because it is resource-oriented
instead of action-oriented. A proof-of-concept shows that
distributed affordance is a feasible strategy on today’s Web.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
affordance, distributed systems, hypermedia, rest, Web

1. INTRODUCTION
The world around us is filled with affordances—properties

of objects that allow us to perform actions. For example,
a door handle is the affordance that lets us open a door,
and a pen is the affordance that allows us to write a note.
However, that same pen can afford stirring a cup of coffee
and, with some skill, even opening a beer bottle. While
psychologist James J. Gibson initially defined “affordance”
in 1977 as an objectively measurable action opportunity
provided by an object [18], it was Donald Norman who
saw the potential of making those opportunities subjective,
depending on who wants to use the object [25].
Little did Gibson and Norman know that their notion

would become a key concept of the World Wide Web. Thanks
to the invention of hyperlinks, documents became affor-
dances through which actions could be performed. More than
40 years after Gibson, Roy T. Fielding put it as follows [15]:

When I say hypertext, I mean the simultaneous
presentation of information and controls such
that the information becomes the affordance
through which the user (or automaton) obtains
choices and selects actions.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Interestingly, on today’s Web, the subjectiveness of affor-
dances works in a publisher-driven way rather than a user-
driven way. It is indeed the content publisher who decides
what hyperlinks the user will have at his disposal. However,
how can a publisher possibly know all the actions a user
might want to perform? For example, if someone publishes
a book review and adds a link to buy that book on Amazon,
this will cover one possible action. But what if the user
wants to read the book online, or borrow it from his local
library? Although the “read online” action might reasonably
be foreseen, “borrow from local library” is entirely dependent
on the user and his current context, and can therefore not
be determined beforehand. In general, just like with the pen
that is used as a bottle opener, providers can never guess
all actions users might want to perform.
The question gets even more intriguing when hyperme-

dia drives the application state. Fielding explained that, in
hypermedia apis, the user advances the application state
through controls in representations of resources. Conse-
quently, every hypermedia representation must contain the
controls leading to next steps [15]. For example, if a user
is buying books, the representation of his virtual shopping
cart must include links that allow him to order more or to
proceed to the payment. Again, we can ask ourselves the
same question: how can a publisher know what next steps
the user might want to take? Sure, all possible steps within
the application might be known, but what if the user wants
to do something else, such as reading a sample chapter on
the author’s site, or asking social network friends which of
two books they recommend?
In a Web for the 21stcentury, we can no longer confine appli-

cation state to the boundaries of a single application. Instead,
we should see application state on a Web scale, where the
affordance provided by a piece of information is distributed
across different Web applications. This paper therefore intro-
duces a scalable approach to construct distributed affordance
by generating personalized hypermedia controls that are ob-
tained from several external sources. This transforms hyper-
media affordance into a subjective experience, not imposed
by the publisher, but created around the user.
This paper is structured as follows. In the next section,

we discuss related work by looking at the broader hyperme-
dia context and examining other solutions for personalizing
affordances. Section 3 introduces the distributed affordance
concept, and Section 4 describes its proposed architecture.
Section 5 shows a proof-of-concept that brings distributed
affordance to today’s Web browsers. The possibilities and
limitations of our solution are discussed in Section 6. Finally,
we conclude and outline future work in Section 7.

1399



2. RELATED WORK

2.1 The Web and Hypermedia
The invention of the World Wide Web [6] finally enabled hy-

permedia at a global scale. The requirements of such a large
distributed system have been investigated by Fielding [16, 17],
who derived the Representational State Transfer (rest) ar-
chitectural style as a framework to develop and analyze dis-
tributed hypermedia systems. One of the constraints imposed
by rest is hypermedia as the engine of application state, the
notion that representations should contain the controls to
advance the application state, e.g., hyperlinks and forms
that lead to subsequent steps. This constraint is essential
to guarantee independent evolution of client and server and
therefore long-term evolvability.

2.2 Web Intents
Today, the idea of dynamically adding affordances is mostly

associated with Web Intents [9, 20]. Initially conceived by
Paul Kinlan of Google, Web Intents aimed to become a Web
version of the Intents system found on Android devices, where
intents are defined as “messages that allow Android compo-
nents to request functionality from other components” [37].
With Web Intents, Web applications can declaratively indi-
cate their intention to offer a certain action, and websites
can indicate they afford this action. For example, social
media sites can indicate they enable the action “sharing”,
and a photo website can offer their users to “share” pictures.
When a user initiates the “share” action on the website,
Web Intents then allow him to share the photo through his
preferred supported application.
While Web Intents’ goals are similar to ours, there is

a crucial difference in their architecture that severely limits
their applicability. The benefit of Web Intents is that they
are scalable in the number of action providers. Without Web
Intents, publishers have to decide which action providers they
support. For instance, the publisher of the photo website
would have to decide which specific sharing applications
it would offer its users. With Web Intents, the user can
share photos through his preferred application, without the
publisher having to offer a link to it. A major drawback of
Web Intents is that they do not scale in the number of actions.
Although the OpenIntents initiative allows to define custom
actions [26], a publisher still has to decide which actions to
include. In the photo website example, the publisher might
opt to include a “share” action, but that is not useful if the
user wants to order a poster print of a picture, download it to
his tablet, or edit it in his favorite image application. While
this strategy works on a device platform such as Android,
where the set of possible actions is limited because of device
constraints, such a closed-world assumption cannot hold on
a Web scale. In November 2012, Web Intents support was
removed from the Chrome browser [8]. Summarizing, we can
say that Web Intents do not solve the core issue: a publisher
still has to determine what affordances a user might need.
The problem thus shifts from deciding which action providers
to support to deciding which actions to support. Therefore,
Web Intents only offer personalized affordance to a limited
extent and do not sufficiently scale.

2.3 Social Interactions
A very prominent form of external affordances on today’s

Web are widgets that provide social interactions. We consider

them external because they are commonly included in html
representations as script or iframe tags whose source url
leads to an external domain, classifying them as embedded link
hypermedia factors [4]. Examples include the Facebook Like
button and the Twitter Tweet button [11]. Some of those
widgets demonstrate personalized affordance: for instance,
Facebook can personalize its button with pictures of the
user’s friends with links to their profiles. However, it is still
the publisher who must decide what sharing applications to
include. An additional issue is that different applications
demand different metadata for optimal widget integration,
which can make adding widgets costly [34].
Services such as AddThis [1] offer simple personalized

access to different social networking sites. Publishers only
have to include one external script to provide access to many
different interaction providers. If the visitor has an AddThis
account, he may indicate his preferred sharing applications,
which are then shown on visited pages that include AddThis.
We could see AddThis as a version of Web Intents with
only one action, albeit a platform in which the supporting
applications do not have to indicate their intention since
AddThis indexes them centrally—and manually. Therefore,
the principle is not scalable in the Web sense of the word.

2.4 Context-based Hyperlinks
Since the early days of the Web, we have seen context-

based hyperlinks. One typical example are advertisements.
On the one hand, on-demand hyperlinks from advertisers can
appear in search results for certain queries. While these links
are certainly personalized, they are not distributed because
they are generated by the server, based on a user profile. In
that sense, they are part of the regular application state flow,
because they effectively point to next steps a user might want
to take. The decision of which links to include is however
determined by an application-specific user profile as opposed
to an independent, cross-application preference indication.
The collection of possible hyperlinks is also centralized—and
closed, because of the financial aspects involved in advertising.
On the other hand, advertisements can be embedded in
publishers’ websites, which slightly changes the situation.
Still, they will not add affordance to the resource the user is
viewing, but rather show links to related services that reflect
in the first place the interest of the advertiser and are thus
again publisher-driven.
Adaptive navigation support [13] is the corresponding

topic within adaptive hypermedia [12], a research field that
concerns the personalisation of the hypermedia experience.
However, most adaptive navigation systems seem to work
with recommendation suggestion rather than automatic link
generation. Systems that do generate links mostly work
on a closed set of documents and affordances. In several
cases, the generated links do not specifically enhance the
consulted resource, but merely act as an affordance of the
resource’s context instead of the resource itself, decreasing
their relevance.

3. CONCEPT
3.1 Motivation
Every time we browse the Web, we take for granted the

revolution http hyperlinks have brought to information
consumption. Nonetheless, the idea that you simply click on
a piece of information to possibly retrieve a resource from the
other side of the world started a groundbreaking revolution.

1400



Like any good technological invention [5], we notice it only
when it is absent: when we are on a Web page and want to
perform an action for which we find no hyperlink. We identify
three distinct possible causes that can lead to this:

1. The affordance is present, but overlooked.
This is where Gibson’s [18] affordances differ from Nor-
man’s [25]. Whereas Gibson considers all action possi-
bilities, even those (seemingly) inaccessible for a sub-
ject, Norman focuses on perceived affordance.

2. The affordance is present with another provider.
This happens when the affordance leads to an action
that addresses the user’s intention but not his preferred
handling. For instance, a site offers the “share” action
with Facebook but not with Twitter.

3. The affordance is not present.
The user has to fall back to other mechanisms, since the
desired action cannot be completed with hypermedia.
This is caused by a mismatch between the publisher’s
expectations and the user’s actual intentions.

Each of the above three causes involves the following actor
groups. The publisher offers a representation of a resource
and its associated affordance. The user consumes this repre-
sentation and depends on the affordance therein to perform
subsequent actions. The provider offers the actions desired
by the user; this actor can either be the publisher itself or
a third party.
The first of the three causes is the result of the user’s subjec-

tive perception and therefore not a technical but a usability-
related issue, which the publisher can solve with various
strategies [27]. The second and third causes concern objec-
tively missing affordances and therefore demand a different
category of solutions.
For the second cause, where the publisher supplies the

actions but not the desired provider, solutions such as Web
Intents exist, as discussed in the previous section. The ex-
plicit assumption of these solutions is that a publisher cannot
foresee all providers for all possible actions, which is correct.
However, their implicit assumption is that a publisher can
foresee all actions a user might want to perform, which is
equally unrealistic on a Web scale as foreseeing all providers.
Therefore, the second cause is actually a corner case of the
third, especially if we consider a desired action as the combi-
nation of an intention and a specific provider.
Finally, for the third cause, and for the portion of the

second cause where existing methods fall short, there are
presently no solutions, which is the main motivation behind
this paper. In essence, the issue arises because current hy-
permedia systems maintain a closed-world assumption [30].
Since none of the common definitions of hypertext state that
all possible next steps should be contained in a hypertext
document [14, 15, 24] (which is impossible anyway with such
a multitude of users), the notion of hypermedia as “the engine
of application state” is limited to those situations where the
publisher has correctly predicted the actions a user (or ma-
chine client) might want to take. Unfortunately, more often
than not, publishers have specific use cases in mind and will
only supply affordance they consider relevant. In that sense,
“hypermedia as the engine of application state” remains con-
fined to the borders of a single application—unless we find a
way to realize an open-world assumption for hypermedia.

3.2 Observations
In order to devise a solution, we will look at current user

behavior when desired affordance is missing in the hyperme-
dia representation. The flexibility of the term “affordance”
becomes apparent when we see that users are still able to
realize their intention by achieving the action through other
means. For example, if a user wants to share a photo on
his preferred social website, but a hyperlink is missing, he
can use the browser’s affordances and type the website’s
url in the address bar and manually share the photo. The
same applies to other actions such as ordering a print and
downloading the photo to a tablet. This reminds us of pre-
hypermedia times, before information became an affordance.
It is also not unlike machine clients that are consuming
a non-hypermedia driven api and, for lack of affordance in
the representation, are forced to know themselves how to
advance the application state.
This does not mean the representation lacks the necessary

information to proceed to the action. It does, however, mean
that the affordance for this action does not reside in the
representation itself, and has to be created manually from
non-actionable information in that representation and out-of-
band knowledge about action providers. For example, a user
reading a book review might want to perform actions such
as buying the e-book version or borrowing it from a local
library. If the controls that afford buying are not present in
the review page, the user might copy the book’s title from
the review text (non-actionable information), paste it into
a search engine, and then find the relevant search result
that does afford buying (knowledge about action providers).
However, such an approach that relies on manual creation
of external affordance is far less efficient than affordance
resulting from the “simultaneous presentation of information
and controls” [15].

3.3 Distributed Affordance
Based on the observation that representations often con-

tain the necessary information, albeit in non-actionable form,
and the fact that knowledge about action providers is avail-
able, we introduce the concept of distributed affordance. The
idea is to dynamically create affordance based on the infor-
mation already present in the representation, with knowledge
from distributed sources. This will augment the affordance
of the representation with controls that directly relate to
the representation itself, instead of merely to its context.
Furthermore, we do not need to assume the publisher knows
the desired actions the user wants to perform or the providers
he prefers, as the only data needed from the publisher is
information about the representation itself. Based on the
user’s profile, we construct the most relevant affordance, de-
pending on his preferences and current browsing context. For
example, for the user reading the book review, hyperlinks
to the e-book version and the user’s local library could be
inserted automatically as distributed affordance.
The technical challenges are, firstly, to extract the non-

actionable information from the representation and secondly,
to organize the knowledge about actions offered by providers.
Thirdly, we need to capture a user’s preferences to, fourthly,
combine the non-actionable information and the knowledge
about action providers into possible actions. Fifthly, we must
integrate affordances for these actions into the original repre-
sentation. In the next section, we introduce an architecture
that supports the creation of distributed affordance, starting
with the components that realize these five functions.

1401



* 1
*

1

Representation RepresentationEnricher
«use»

ResourceExtractor

«use»

Resource
«instantiate»

APICatalogAPIDescription
«instantiate»

PreferenceManager

ActionProviderAction
«instantiate»

«use»

1 2

3

4
5

Figure 1: The resources inside a representation are extracted 1 and combined with api descriptions 2 ,
based on the user’s preferences 3 , into actions 4 , for which affordances are added to the representation 5 .

4. ARCHITECTURE

4.1 Components
The model architecture consists of five groups of compo-

nents, as displayed in Figure 1, which we discuss in more
detail below.

1 Information extraction Given a resource with non-
actionable information items, a ResourceExtractor extracts
those items as resources with properties. These resources are
structured as key/value pairs, for example as json [31], or
more formally, as rdf triples [21]. The benefit of the latter
is that the properties are uris, which gives them universal
meaning across different applications. ResourceExtractor
itself is only an interface, as many implementations are pos-
sible. For example, for html representations, we can define
implementations that extract resources from rdfa [2] or
html5 microdata [38]. For (partly) textual representations,
extractors could for instance use named-entity recognition
techniques [23]. In any case, the possible extractors depend
on the media types of the available representations.

2 Provider knowledge The knowledge about actions
offered by a provider can be generalized in api descriptions.
The information in these descriptions should be structured
in such a way that, given certain resource properties, it is
simple to decide which apis support actions on that resource.
Different APICatalog implementations can support different
api description methods, such as rell [3] or restdesc [35].
It is important to note that the resource extraction method
is independent from the api description method, i.e., api
catalogs allow to search for apis based on resources and
their relationships, regardless of how these resources were
extracted. This prevents coupling between information de-
scription and api description, allowing instead to explore
all combinations thereof, which results in a more valuable
affordance for the user.

3 User preferences A PreferenceManager keeps track
of a user’s preferences and thereby acts as a kind of filter
on the APICatalog, typically selecting only certain apis and
sorting them according to appropriateness for the user. Var-
ious models are possible, such as explicitly asking a user
to indicate his preferences or learning from previously used
affordances. In simpler implementations of the architecture,
the role of the PreferenceManager can be taken care of by
the APICatalog, which then only includes api descriptions
that match the user’s preferences.

4 Action generation Based on a user’s preferences,
an ActionProvider instantiates possible actions, which are
the application of a certain api on a specific set of resources.
Thereby, every action is associated with one or more resources
inside the representation, which makes the actions specific
for the representation instead of merely related to its context.

5 Affordance integration A final category of compo-
nents are RepresentationEnricher implementations, which
add affordances for the generated possible actions to a hy-
permedia representation that is sent to the user. Through
these affordances, the user can chose and execute the de-
sired actions directly. Implementations depend on the media
type of the desired representation as they need to augment
its affordance in a specific way. Technically speaking, this
media type could be different from the media type whose
non-actionable information was extracted, e.g., resources
could have been extracted from a json representation while
the result is presented as html.

4.2 Deployment
Two main deployment strategies exist: the components

can be deployed inside the client or offered as a service.
Client-based The architecture that provides the dis-

tributed affordance can be implemented directly in a hyper-
media client, or as a plugin thereof. In the common case of
a Web browser, it can be programmed as a browser extension.
The benefit is that some of the client’s functional blocks can
be reused, such as the representation parser. When the client
requests a representation, the extractor will be triggered to
find resources therein, which will prompt the action provider
to combine these resources with relevant api descriptions
into actions. Affordances for these actions can then be added
in the interface. In graphical clients, they could become part
of the user interface or the hypermedia browsing space. For
machine clients, they are added to the existing affordance set.
Affordance as a service The drawback of the above

approach is that users need a supporting client to profit
from the augmented affordance. This assumption can lead
to a bootstrapping problem. Therefore, the architecture can
also be offered as a service, exposing a hypermedia api with
distributed affordance as resources. Meant as a transitional
measure, These resources can be included as embedded links
in representations [4] to augment them with dynamically
generated affordance. This strategy is thus able to leverage
distributed affordance without explicit client support.

1402



Figure 2: The links at the bottom are automatically generated affordance, resulting from the application of
api descriptions to machine-interpretable data extracted from the representation’s html source.

5. PROOF OF CONCEPT

5.1 Functionality
We have developed a proof of concept platform that im-

plements distributed affordance as a service, allowing to
demonstrate the concept without a specific browser exten-
sion. This platform, called Vyperlinks, allows straightforward
integration of distributed affordance into existing representa-
tions. Vyperlinks is a hypermedia api that serves distributed
affordance resources through the following uri template [19]:

http://vyperlinks.org/actions{?for}

Herein, the for parameter should become a uri with a frag-
ment identifier [7] that points to the resource within a docu-
ment for which to generate distributed affordance. The pres-
ence of the fragment is important, because representations
might include different resources that each have different
affordances. The resolving strategy differs per media type;
for html, the fragment corresponds to the element with the
same identifier. An instantiation of this template points to
an actions resource that contains the distributed affordance
for the specified resource.
An html document can indicate a placeholder for affor-

dances with <div class="affordances" data-for="id">,
where id is the identifier of the element for which affordances
should be generated. If the browser does not support dis-
tributed affordance (neither natively nor with an extension),
a so-called shim script will take over and request the affor-
dances through Vyperlinks using an iframe. The iframe’s
same-origin policy guarantees the privacy of the user’s pref-
erences and maintains the trust of the provided affordance.

5.2 Implementation
When the Vyperlinks server receives a request for an ac-

tions resource, it first fetches the resource with the specified
url, without the fragment identifier. If the request success-
fully returns a representation, the resources it contains are
extracted. Then, they are offered to an action provider that
generates the actions according to the user’s preferences, and
are subsequently filtered for those actions that act upon the
resource identified by the fragment. Finally, affordances for

these actions are represented in a hypermedia format, which
is then sent back to the user.
The user can be identified on the Vyperlinks platform with

existing mechanisms [29, 32]. This concept is similar to those
discussed in Section 2.3 and distinct from the identification
mechanism of the application that embeds the affordance.
Users that do not have a Vyperlinks account or that are
not authenticated receive best-effort personalizations, for
instance, based on their language or location. Even with-
out personalization, the affordance remains distributed and
relevant, i.e., it is constructed from distributed sources and
specifically generated for the specified resource.

5.3 Technologies
Currently, the Vyperlinks server supports html representa-

tions and html5 microdata [38]. The current api description
model straightforwardly matches a resource’s type and asso-
ciated properties. We plan to extend Vyperlinks with more
extractors and description models, as well as with advanced
user preference management, as detailed in Section 7.

5.4 Examples
We have created two examples that demonstrate the inte-

gration of distributed affordance in annotated html docu-
ments,1 which we will discuss below. When studying these
examples, it is convenient to look at both the rendered page
in the browser and the html source code.

Book example This example, shown in Figure 2, has
been adapted from the Schema.org website [10] and features
an html representation of the book “The Catcher in the Rye”
marked up with html5 microdata in the Schema.org vocabu-
lary. The corresponding resource has been given the identifier
book. To this representation, we added a placeholder for
affordances relating to the book resource. The Vyperlinks
platform extracts the properties of the book (such as author
and title) and uses them to generate hyperlinks that afford
buying and borrowing, among other actions. Rather than
merely link to the action providers’ start page, the hyperlinks

1Available at http://rubenverborgh.github.com/Distributed-
Affordance-Examples/

1403

http://rubenverborgh.github.com/Distributed-Affordance-Examples/
http://rubenverborgh.github.com/Distributed-Affordance-Examples/


directly point to the page about the specific action on the
specific resource, i.e., at the furthest possible point in the
application state, which is the point to where a manually
inserted link would also lead.

Publications example This example shows a scientific
publication list that has been annotated with Schema.org
markup. Every entry in the list has its own identifier. In
contrast with the previous example, multiple affordance place-
holders have been inserted, one for each entry. This demon-
strates the necessity of dealing with multiple resources in
a representation through fragment identifiers, and the fact
that affordances can be anchored in different places of the
hypermedia document. At the same time, it indicates the
capability of the Vyperlinks application to timely serve many
actions resources.

6. DISCUSSION

6.1 Enabling Factors
An important difference between the proposed distributed

affordance technique and other solutions that require their
own annotation mechanisms [34] is that distributed affor-
dance aims to reuse existing annotations by providing dif-
ferent extractors. The goal is that no specific modifications
should be necessary to allow users to benefit from distributed
affordance. However, we do require some form of annotations
to be available, so we have to trust there will be sufficient
incentives for publishers to mark up data, such as better in-
dexing by search engines or increased social media exposure.
If not, we can always fall back to content analysis techniques,
but they will be more error-prone.
Additionally, we rely on markup of provider services, be-

cause we need machine-processable api descriptions to gen-
erate affordances for these providers. Fortunately, these
descriptions can be created by third parties instead of solely
by the providers themselves, as indicated by the examples
of Section 5.4, where we created the provider descriptions
ourselves. The architecture can support multiple api sources,
so complex descriptions in different formats are possible.

6.2 Performance
Affordance should be at the user’s disposition as soon as

possible, since the user depends on this affordance to perform
actions. Furthermore, in traditional hypermedia, the affor-
dance is served synchronously with the information, so only
minimal delays are tolerable. Therefore, the performance
of distributed affordance platforms is crucial and several
aspects require special attention.
The critical path of the current affordance-as-a-service

implementation is as follows:

1. fetch the provider’s representation;
2. extract resources from the representation;
3. generate actions from the resources;
4. represent the actions;
5. send the representation to the user.

Therefore, an increase or decrease in time on any of the above
steps directly influences the total time of each affordance
creation. However, the process can be implemented with
streams as a pipe-and-filter architecture, e.g., resource ex-
traction can start when the representation has only partially

been retrieved and action representation can start as soon
as one action becomes available. Nonetheless, the duration
of every step must be kept as short as possible.
The current Vyperlinks platform implements several perfor-

mance optimizations. One of them is caching: the provider’s
representation is only fetched when needed, such that re-
peated requests are not necessary if one representation con-
tains multiple distributed affordance containers. Further-
more, Vyperlinks responses are also cacheable on a per-user
basis. Another optimization strategy is to generate actions
as fast as possible by using proxy urls. This is necessary
because many providers do not directly expose a link to the
desired application state. For instance, an online book ven-
dor might have a search result resource that can be accessed
directly, but one has to download this result page to obtain
a direct link to the desired book page. Instead of fetching
such intermediary pages when the affordance is generated,
the platform returns a proxy url, which is dereferenced
only when used. Additional improvements could involve
client scripting, for instance, to avoid multiple requests when
a page contains different affordance containers, and to speed
up dereferencing by pre-loading proxy urls.

6.3 Scalability
As usual with concepts proposed for the Web, the question

is: will it scale? We will therefore look at the key facets that
make distributed affordance scalable. First, we have to note
that the principle of composing affordance from different
sources is created to make affordance scalable, i.e., to avoid
unnecessary coupling between a client and a server. While
the hypermedia as the engine of application state constraint
improves the independent evolution of client and server—
because the client dynamically discovers what next steps it
can take—it only works in as far as the server can correctly
predict the next steps the client is interested in. Thereby,
conversational coupling [28] is traded for affordance coupling,
which is better, but suboptimal. Distributed affordance
removes this coupling by letting the client choose one or
more affordance providers.
Second, we must investigate whether the proposed ar-

chitecture is scalable itself. In the case of a client-based
deployment, every client has its own distributed affordance
component, and therefore scales with the number of clients.
In the case of a service-based deployment, the rest style can
be used (as is the case with Vyperlinks), because the stateless-
ness and cacheability constraints facilitate replication across
different servers. The proposed architecture does not have
many inter-component dependencies, so it is straightforward
to distribute components across multiple servers.

6.4 Openness
A final discussion facet is the openness of the distributed

affordance concept, because it would be contradictory to
offer distributed affordance from a single centralized system.
It is therefore crucial to understand that Vyperlinks is one
implementation of distributed affordance and not the imple-
mentation. This is why we encourage to use the declarative af-
fordance placeholder, which can be supported by the browser
natively or through an extension, or with a JavaScript shim
(similar to the Web Intents mechanism [20]). That way, users
can indicate their preference for a particular distributed
affordance provider.

1404



r P

(a) missing affordance

A P

(b) api descriptions

R P

(c) functional api descriptions

r

A

A

P

P

PA

(d) Web Intents

r

R

R

A

A

P

P

PAR

(e) distributed affordance

Figure 3: A comparison of distributed affordance and related technologies shows how they differ in the
involvement of representations r , resources R , actions A , and action providers P .

Another aspect of openness is the question whether pub-
lishers will endorse distributed affordance. After all, it might
be in the publisher’s interest that users only have a limited
affordance at their disposal, for instance, for commercial
reasons. We can therefore imagine that publishers might
like to exclude certain actions from the generated affordance.
These commercial considerations should be balanced with
the desire to have an open ecosystem.

7. CONCLUSION AND FUTURE WORK
In this paper, we have observed the discrepancy between

affordance publishers and consumers, and offered a solution
and corresponding architecture for distributed affordance.
Based on a user’s preferences, affordance is generated dy-
namically from distributed providers using non-actionable
information inside representations. This information does
not target a specific api or action, but rather consists of high-
level machine-interpretable properties about the resource. In
contrast with very specific interfaces, this semantic interface
enables serendipitous reuse [36] of the resource by many
different apis. The task of a distributed affordance platform
is to create affordances to the subset of those apis that is rel-
evant for the user. Such a platform can either be integrated
in a client or offered as a service.
In order to position distributed affordance in the broader

Web api ecosystem, we schematically compare it to related
technologies in Figure 3. We will revisit the example of a pub-
lisher that offers a Web page with a book review. First, the
important thing to note is that an affordance is not strictly
necessary for the user to perform the desired action, such as
buying or borrowing the book. If the affordance for the de-
sired action is missing [Fig. 3a], the user can always manually
extract the needed information from the representation to
carry out the action with a provider. For example, the user
could copy the title of the book and paste it into the search
engine of an online book store. This indicates the difference
between an affordance and an enabler. However, a direct
affordance is much more convenient. Second, api descriptions
might indeed lead to a provider, but their starting point is
different. Api descriptions without a functional discovery
mechanism describe how to access the action with a specific
provider [Fig. 3b], such as the required api interactions to
buy a book. Functional api descriptions [35] describe in what
ways providers can act on a resource [Fig. 3c], for instance,
the fact that the book can be bought through one provider
and borrowed through another. Third, Web Intents [20] are
able to suggest providers for actions indicated in a representa-
tion [Fig. 3d]. In that sense, Web Intents are non-functional
service descriptions that explain how to invoke a particular
action with different providers, offered through a convenient
but single-purpose html interface. Finally, distributed affor-
dance allows dynamic discovery of possible actions based on
the extracted resource properties, offering the highest degree
of freedom for affordance generation [Fig. 3e].

We conclude that distributed affordance takes an open-
world assumption with regard to the possible actions a user
can select, as opposed to current hypermedia formats that
require all affordances to be contained within the representa-
tion. Not only does this align better with the Web philosophy,
it is a step towards a personalized hypermedia experience.
The timing of this solution is not coincidental: it is only now
that resources become augmented with sufficient machine-
interpretable information [22], which is vital for automated
affordance generation. Furthermore, the shift towards seman-
tic description of rest apis, necessary to discover matching
actions, is also fairly recent [33]. These two evolutions enable
distributed affordance, leading to a Web in which not only
the information is open, but also the affordances each piece
of information contains.
Many aspects of distributed affordance are of interest for

future research. One important task is to design techniques
for user modelling [12], solving problems such as determining
which affordances are relevant for a user, and how these can
be selected and ranked in real-time. We should determine
where and how the user’s preferences are stored, and how we
can guarantee safety and privacy. A related question is the
discovery and storage of api descriptions. Api providers must
be able to publish descriptions in order to be found by users,
who can then incorporate these apis in their preferences.
Furthermore, publishers with commercial interests might
want to include only certain features, excluding affordances
that lead to their competitors, so a filter could be necessary.
In the future, we want to establish the Vyperlinks plat-

form as a leading example of the possibilities of distributed
affordance. We also plan to integrate the platform directly
into Web browsers. While the implementation of this paper
focuses on html representations, machine clients can also
benefit from distributed affordance in many ways. How-
ever, supplying affordance for such clients comes with new
challenges, such as extending the concept of preferences to
machines. A current bottleneck for the platform is the limited
availability of machine-interpretable api descriptions. There-
fore, we will explore the automated integration of existing
Web apis. After all, the more apis are supported, the better
the personalized distributed affordance experience becomes.
Finally, we aim to investigate the standardization of dis-
tributed affordance technology, with the ultimate goal of
making it widely available on the Web. On the website
http://distributedaffordance.org/, you can follow our
ongoing research in this area.

8. ACKNOWLEDGMENTS
The described research activities were funded by Ghent

University, the Institute for the Promotion of Innovation
by Science and Technology in Flanders (iwt), the Fund
for Scientific Research Flanders (fwo Flanders), and the
European Union.

1405

http://distributedaffordance.org/


9. REFERENCES
[1] AddThis, http://www.addthis.com/
[2] Adida, B., Birbeck, M., McCarron, S., Herman, I.: rdfa

Core 1.1. w3c Recommendation (Jun 2012), http:
//www.w3.org/TR/2012/REC-rdfa-core-20120607/

[3] Alarcón, R., Wilde, E.: Linking Data from restful
Services. In: Third Workshop on Linked Data on the
Web (2010), http://events.linkeddata.org/ldow2010/
papers/ldow2010_paper10.pdf

[4] Amundsen, M.: Hypermedia types. In: Wilde, E.,
Pautasso, C. (eds.) rest: From Research to Practice, pp.
93–116. Springer, New York (2011),
http://dx.doi.org/10.1007/978-1-4419-8303-9_4

[5] Bergman, E.: Making technology invisible:
A conversation with Don Norman. Information
Appliances and Beyond: Interaction Design for
Consumer Products pp. 10–26 (2000)

[6] Berners-Lee, T., Cailliau, R., Groff, J.F.: The world-wide
web. Computer Networks and isdn Systems 25(4–5),
454–459 (1992), http://www.sciencedirect.com/
science/article/pii/016975529290039S

[7] Berners-Lee, T., Fielding, R., Masinter, L.: Uniform
Resource Identifier (uri): Generic syntax. ietf
Standards Track (Jan 2005),
http://tools.ietf.org/rfc/rfc3986

[8] Billock, G.: Status of Web Intents in Chrome (2012),
http://lists.w3.org/Archives/Public/public-web-
intents/2012Nov/0000.html

[9] Billock, G., Hawkins, J., Kinlan, P.: Web Intents. w3c
working draft (Jun 2012),
http://www.w3.org/TR/web-intents/

[10] Bing, Google, Yahoo!, Yandex: Schema.org. Specification
(Jun 2011), http://schema.org/docs/schemas.html

[11] Bodle, R.: Regimes of sharing. Information,
Communication and Society 14(3), 320–337 (Apr 2011)

[12] Brusilovsky, P.: Adaptive hypermedia. User Modeling
and User-Adapted Interaction 11(1–2), 87–110 (2001),
http://dx.doi.org/10.1023/A%3A1011143116306

[13] Brusilovsky, P.: Adaptive navigation support. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The
Adaptive Web, pp. 263–290. Springer-Verlag (2007),
http://dl.acm.org/citation.cfm?id=1768197.1768207

[14] Conklin, J.: Hypertext: An introduction and survey.
Computer 20(9), 17–41 (Sep 1987)

[15] Fielding, R.T.: rest apis must be hypertext-driven.
Untangled – Musings of Roy T. Fielding (Oct 2008),
http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven

[16] Fielding, R.T., Taylor, R.N.: Principled design of the
modern Web architecture. Transactions on Internet
Technology 2(2), 115–150 (May 2002)

[17] Fielding, R.T.: Architectural Styles and the Design of
Network-based Software Architectures. Ph.D. thesis,
University of California, Irvine, California (2000)

[18] Gibson, J.J.: The theory of affordances. In: Shaw, R.,
Bransford, J. (eds.) Perceiving, Acting, and Knowing:
Toward an Ecological Psychology. Lawrence Erlbaum,
New Jersey (1977)

[19] Gregorio, J., Fielding, R., Hadley, M., Notthingham, M.,
Orchard, D.: uri template. ietf Proposed Standard
(Mar 2012), http://tools.ietf.org/rfc/rfc6570

[20] Kinlan, P.: Web Intents (2010–2013),
http://webintents.org/

[21] Klyne, G., Carrol, J.J.: Resource Description Framework
(rdf): Concepts and Abstract Syntax. w3c

Recommendation (Feb 2004), http:
//www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[22] Mühleisen, H., Bizer, C.: Web Data Commons –
Extracting structured data from two large Web corpora.
In: Proceedings of the 5th Workshop on Linked Data on
the Web. vol. 937 (Apr 2012), http://ceur-ws.org/Vol-
937/ldow2012-inv-paper-2.pdf

[23] Nadeau, D., Sekine, S.: A survey of named entity
recognition and classification. Lingvisticæ Investigationes
30(1), 3–26 (Jan 2007),
http://dx.doi.org/10.1075/li.30.1.03nad

[24] Nelson, T.: Dream machines. self-published (1978)
[25] Norman, D.A.: The Design of Everyday Things.

Doubleday, New York (1988)
[26] OpenIntents, http://www.openintents.org/
[27] Palmer, J.W.: Web site usability, design, and

performance metrics. Information Systems Research
13(2), 151–167 (Jun 2002),
http://dx.doi.org/10.1287/isre.13.2.151.88

[28] Pautasso, C., Wilde, E.: Why is the Web loosely
coupled? – A multi-faceted metric for service design. In:
Proceedings of the 18th international conference on
World Wide Web. pp. 911–920. acm, New York (2009),
http://doi.acm.org/10.1145/1526709.1526832

[29] Recordon, D., Reed, D.: Openid 2.0: a platform for
user-centric identity management. In: Proceedings of the
second acm workshop on Digital identity management.
pp. 11–16. acm, New York (2006),
http://doi.acm.org/10.1145/1179529.1179532

[30] Reiter, R.: On closed world data bases. In: Logic and
Data Bases. pp. 55–76 (1977)

[31] Severance, C.: Discovering JavaScript Object Notation.
Computer 45(4), 6–8 (Apr 2012), http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=6178118

[32] Sporny, M., Inkster, T., Story, H., Harbulot, B.,
Bachmann-Gmür, R.: Web identification and discovery.
w3c Editor’s Draft (Dec 2011),
http://www.w3.org/2005/Incubator/webid/spec/

[33] Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller,
S., Steiner, T., Taheriyan, M., Van de Walle, R.:
Semantic description of restapis. In: Pautasso, C.,
Wilde, E., Alarcón, R. (eds.) rest: Advanced Research
Topics and Practical Applications (2013)

[34] Verborgh, R., Mannens, E., Van de Walle, R.: The rise
of the Web for Agents. In: Proceedings of the First
International Conference on Building and Exploring Web
Based Environments. pp. 69–74 (Jan 2013),
http://thinkmind.org/download.php?articleid=web_
2013_3_30_40070

[35] Verborgh, R., Steiner, T., Van Deursen, D., Coppens, S.,
Gabarró Vallés, J., Van de Walle, R.: Functional
descriptions as the bridge between hypermedia apis and
the Semantic Web. In: Proceedings of the Third
International Workshop on restful Design. pp. 33–40.
acm (Apr 2012), http://www.ws-
rest.org/2012/proc/a5-9-verborgh.pdf

[36] Vinoski, S.: Serendipitous reuse. Internet Computing
12(1), 84–87 (2008),
http://steve.vinoski.net/pdf/IEEE-
Serendipitous_Reuse.pdf

[37] Vogel, L.: Android Intents – tutorial (2009–2013),
http://www.vogella.com/articles/AndroidIntent/
article.html

[38] Web Hypertext Application Technology Working Group:
html – microdata, http://www.whatwg.org/specs/web-
apps/current-work/multipage/microdata.html

1406

http://www.addthis.com/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://events.linkeddata.org/ldow2010/papers/ldow2010_paper10.pdf
http://events.linkeddata.org/ldow2010/papers/ldow2010_paper10.pdf
http://dx.doi.org/10.1007/978-1-4419-8303-9_4
http://www.sciencedirect.com/science/article/pii/016975529290039S
http://www.sciencedirect.com/science/article/pii/016975529290039S
http://tools.ietf.org/rfc/rfc3986
http://lists.w3.org/Archives/Public/public-web-intents/2012Nov/0000.html
http://lists.w3.org/Archives/Public/public-web-intents/2012Nov/0000.html
http://www.w3.org/TR/web-intents/
http://schema.org/docs/schemas.html
http://dx.doi.org/10.1023/A%3A1011143116306
http://dl.acm.org/citation.cfm?id=1768197.1768207
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/rfc/rfc6570
http://webintents.org/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://ceur-ws.org/Vol-937/ldow2012-inv-paper-2.pdf
http://ceur-ws.org/Vol-937/ldow2012-inv-paper-2.pdf
http://dx.doi.org/10.1075/li.30.1.03nad
http://www.openintents.org/
http://dx.doi.org/10.1287/isre.13.2.151.88
http://doi.acm.org/10.1145/1526709.1526832
http://doi.acm.org/10.1145/1179529.1179532
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6178118
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6178118
http://www.w3.org/2005/Incubator/webid/spec/
http://thinkmind.org/download.php?articleid=web_2013_3_30_40070
http://thinkmind.org/download.php?articleid=web_2013_3_30_40070
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://steve.vinoski.net/pdf/IEEE-Serendipitous_Reuse.pdf
http://steve.vinoski.net/pdf/IEEE-Serendipitous_Reuse.pdf
http://www.vogella.com/articles/AndroidIntent/article.html
http://www.vogella.com/articles/AndroidIntent/article.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html

	Introduction
	Related work
	The Web and Hypermedia
	Web Intents
	Social Interactions
	Context-based Hyperlinks

	Concept
	Motivation
	Observations
	Distributed Affordance

	Architecture
	Components
	Deployment

	Proof of Concept
	Functionality
	Implementation
	Technologies
	Examples

	Discussion
	Enabling Factors
	Performance
	Scalability
	Openness

	Conclusion and Future Work
	Acknowledgments
	References -9pt plus 1pt 



