
A Concept for Generating Simplified RESTful Interfaces

Markus Gulden
Zielpuls GmbH

Leopoldstraße 244
Munich, Germany

markus.gulden@zielpuls.com

Stefan Kugele
Institut für Informatik

Technische Universität München
Garching bei München, Germany

kugele@in.tum.de

ABSTRACT
Today, innovative companies are forced to evolve their soft-
ware systems faster and faster, either for providing customer
services and products or for supporting internal processes.
At the same time, already existing, maybe even legacy sys-
tems are crucial for different reasons and by that cannot be
abolished easily. While integrating legacy software into new
systems in general is considered by well-known approaches
like SOA (service-oriented architecture), at the best of our
knowledge, it lacks of ways to make legacy systems available
for remote clients like smart phones or embedded devices.

In this paper, we propose an approach to leverage hetero-
geneous (legacy) applications by adding RESTful web-based
interfaces in a model-driven way. We introduce an additional
application layer, which encapsulates services of one or sev-
eral existing applications, and provides a unified, web-based,
and seamless interface. This interface is modelled in our own
DSL (domain-specific language), the belonging code gener-
ator produces productive Java code. Finally, we report on
an case study proving our concept by means of an e-bike
sharing service.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Languages; D.2.12 [Software Engineering]: Interoperabil-
ity—Data mapping, interface definition languages; H.3.4 [In-
formation Storage and Retrieval]: Systems and Soft-
ware—Distributed systems; H.3.5 [Information Storage
and Retrieval]: Online Information Services—Web-based
services; H.5.4 [Information Interfaces and Presenta-
tion]: Hypertext/Hypermedia—Architectures

General Terms
Design, Languages

Keywords
Data transfer object, domain-specific language, representa-
tional state transfer, service-orientated architecture

1. INTRODUCTION
The year 2007 represents an essential moment: with the

release of the first iPhone, Apple made it to start a trend,

which has influenced our private and professional life until
today, and there is no end in sight. Before, mobile phones
were only used for calling and texting. At best business
men had smart phones with Internet connectivity, but only
for writing emails and for synchronising appointments and
contacts. The iPhone changed this: not least by forcing con-
sumers to book a data plan with their conventional service
plan, mobile Internet got mass appeal. Today, smart phones
are unimaginable without Internet connection. There are
several hundred thousands of apps available for multiple
platforms, and most of them need to access the Internet
for retrieving time tables, booking a car or a train ticket,
accessing the users’ cloud storage, downloading a new song,
posting news on a social network, or looking for a restaurant
nearby.

But what only was a gimmick for private users and hob-
byists at the beginning, has now become crucial for modern
enterprises, on one side for offering customer products and
service, on the other side for supporting internal processes
and business. Today, companies like banks or delivery ser-
vices have to supplement their service by an app to stay
attractive. Mobility services like car rental, train operators,
or travel agencies have to be reachable on the way. But
there are also totally new opportunities to provide context-
dependent information via apps, for example special offers
or advertisement from a shop, the customer is close by. All
in all, consumer mobile app market has a volume of sev-
eral billion US dollars per year. But also companies can
get more efficient by equipping their employees with mobile
apps, for example to support inventory tasks or the tracking
of shipments.

Since apps often shall make already existing services avail-
able on smart phones, companies do not want to develop new
systems, but want to make the existing ones reachable via
the Internet. Certainly, most enterprise application land-
scapes consist out of more than one system, which are im-
plemented with more than one, and sometimes even with
legacy technologies.

Thereby, several issues are conceivable, like existing sys-
tems are not Internet-capable, interfaces are technologically
and syntactically heterogeneous, or their data model simply
might be more complex than needed by smart phone clients.
Since changing the existing system normally is not an op-
tion, there must be another way to make existing interfaces
accessible for external clients.

To address this problem, this paper proposes a model-
driven approach to adapt existing systems and generate Java-
based, web service-capable interfaces. It combines the well-

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author's site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

1391

known Representational State Transfer [5] with the Data
Transfer Object-pattern [7, 20] to provide a seamless and
unified interface, using a simplified data model, which fits
on the respective client and its use case.

The rest of the paper is structured as follows. Section 1.1
summarises related work, followed by the contribution of this
work in Section 1.2. The general approach is introduced in
Section 2 and its implementation in Section 3, both using
some exemplary issues from the case study, which is entirely
explained in Section 4. Finally, Section 5 concludes this
paper by discussing pros and cons as well as introducing
further work.

1.1 Related Work
Representational State Transfer (REST) means a set of

architectural principles, which enable the design of scalable,
maintainable, and evolvable web services. It was introduced
in 2000 by Roy Fielding [5, 6]. REST is one of the two
major architectural styles for designing and implementing
web services. Pautasso et al. [17] compare the resource-
oriented one to the RPC-based one and its most common
implementation—the SOAP standard—and look into them
regarding different conceptual and technological criteria. In
a similar way, Pautasso and Wilde [15] compare RESTful
HTTP, RPC over HTTP and the WS-* technology regarding
the degree of loose respectively tight coupling.

In the meantime, due to its simplicity, lightweight, and
interoperability, REST has gained more and more attention
for the creation of interfaces for various use cases. It is used
for web APIs, but also for enterprise application integration
and service-oriented architectures [4, 16, 23]. The concept
for creating simplified, web-based interfaces presented in this
paper is mainly based on the REST principles.

Due to the relevance in implementing interfaces and APIs
mentioned before, there are some promising approaches deal-
ing with different ways of designing, modelling, and creat-
ing as well as mapping existing applications into RESTful
interfaces. Schreier [18] introduces a meta model for de-
signing REST applications, which supports developers in
model-driven development. Szymanski et al. [21] present a
modelling process, which enables the mapping of a service-
oriented legacy application into a RESTful interface, and
handles the challenge of creating an equivalent resource model.
Yet, a manual proceeding is proposed to identify resource
candidates, refine the received model, consolidate activi-
ties, and validate the result. Liu et al. [13] propose a pro-
cess for reengineering legacy and service-oriented systems
as well. They consider entities from the data model, rela-
tionships between entities and business processes, and com-
bine that into the resource model of the RESTful inter-
face. Strauch et al. [19] present an iterative process model,
which supports developers to redesign a service-oriented in-
terface into a RESTful one. All these approaches provide—
technical or conceptual—tools to transform service-oriented
systems and interfaces into really RESTful ones. Laitko-
rpi et al. [11, 12] introduce a tool-supported process to ab-
stract application interfaces to REST-like services. Differ-
ent from our approach, this one enables developers to create
a new service from the scratch and generate a one-to-one
RESTful interface for that. Engelke and Fitzgerald [3] re-
port on a case study aiming to encapsulate an existing reli-
able and proven legacy application by a RESTful interface
specifically developed for this purpose. In contrast to our

work, there is no general approach, and the RESTful in-
terface only forwards payload in a transparent way, against
which our approach does some data transformation for pro-
viding a simplified data model to respective clients. All these
approaches have in common, that only one application—
already existing or developed from scratch—is encapsulated
by a newly designed RESTful interface.

There are several approaches to measure the “RESTful-
ness” of APIs, Fowler for example proposes the Richardson
Maturity Model [8]. In our case, we assume that developers
are familiar with RESTful design and rely on them design-
ing a nice RESTful interface. Therefore, we want to provide
a tool which facilitates the implementation of this design.

The Data Transfer Object pattern is one of the Core J2EE
Patterns introduced by Sun Microsystems [20] as well as de-
scribed by Fowler [7]. It propagates the encapsulating of
several objects into one Data Transfer Object (DTO) to
reduce data overhead of remote calls. This pattern is ex-
tended by the Custom Data Transfer Object pattern [14],
which demands to encapsulate only attributes required by
the specific client of the remote call. This is the second work,
our approach is based on. We use this pattern to achieve
the simplification of an existing data model and thereby the
simplification of the involved interfaces.

1.2 Contribution of this Paper
This paper contributes to the area of enterprise applica-

tion integration. A concept is presented, which enables de-
velopers to adapt—personally developed or bought—appli-
cations or even a composition of several applications, which
are based on heterogeneous technologies. Moreover, they are
made available as web services with a uniform and simplified
RESTful interface (wherein ”‘simplified”’ does not mean a
limited maturity of RESTfulness as mentioned by Fowler [8],
but concerning a reduction of the interface extent and the
complexity of its data model). The generator-based imple-
mentation enables developers to create and evolve this in-
terface in a rapid and model-driven way. Beyond this, the
modular tool implementation enables the integration of ad-
ditional features like version control or conflict detection for
interfaces. In particular, the following contributions are pre-
sented:

(i) An additional layer is introduced, which implements
the interfaces of existing services and enables the pro-
vision of a unified and seamless RESTful interface.

(ii) Developers are enabled to simplify this interface by de-
termining extent, structure, and data model. Since dif-
ferent interface consumers have different requirements
for the respective interface, the developer is able to
create a separate so-called use case-specific interface
for each of these interface consumers.

(iii) To facilitate the design of this new interface as well
as the coupling to services of the existing system, a
domain-specific language is developed. This enables a
quick and easy integration of new services.

(iv) This approach is realised as an Eclipse-based tool, con-
sisting of an editor supplemented by a code genera-
tor. It produces productive JAX-RS code [10], which
is runnable in a standalone environment, but above
all scales for use with enterprise applications. Due to
its modular design, the tool is extendable with several
features.

1392

2. APPROACH
The presented approach is a framework for the model-

driven development of simplified and use case-specific REST-
ful interfaces, building on already existing business logic.
The overall architecture is shown in Figure 1: starting from
an existing system (corresponding to Application layer) with
a global data model (cf. data model at Application layer),
several services and databases, the developer is able to cre-
ate use case-specific interfaces (UCSI s). Each of them has
its own, simplified data model in the form of DTOs.

To illustrate the approach, the following scenario is as-
sumed: a developer shall create a new mobility service, for
instance for e-bike sharing. Most of the functional require-
ments can be fulfilled by the composition of existing, perhaps
bought subsystems (or COTS), which offer functionalities
for customer administration, bike management and reserva-
tion, billing, etc. and thereby constitute the backend of the
system. Since this system is adjusted for a specific domain
(in this case for the e-bike sharing domain), hereinafter it
will also be referred to as domain-specific application. In
Figure 1, this domain-specific application is represented by
the Application layer.

Besides others, one use case is that the system shall en-
able the customer to find free e-bikes as well as make and
manage reservations on the way. Therefore, the developer
shall create a client, e. g. a smart phone app, which meets
these requirements. In principle, the subsystems offer inter-
faces for that client, but for the following issues (I1 - I3),
the creation of a use case-specific interface is necessary.

(I1) Heterogeneous and legacy interfaces: Existing inter-
faces are not only syntactically and technically heter-
ogeneous, but also might not support web-based ac-
cess. Therefore, it is hard to make them attainable for
clients via the Internet.

(I2) Complex interface structure: Subsystems might offer
a larger number of and more complex methods than
needed for this use case.

(I3) Complex data model: The underlying data model might
be more complex than needed by the client, which has
adversely effects at runtime on quality attributes like
performance, and responsiveness as well as additional
implementation effort on client side.

Each of these issues can be considered separately. Thereby,
we are able to derive the following assumptions (A1 - A3).
Afterwards, one requirement is formulated for each assump-
tion, which represents the base for the general approach.

(A1) The introduction of an additional web service layer
provides a unified and seamless interface and enables
various clients to implement against it and access it.

(A2) An appropriate selection of needed services and meth-
ods along with a hierarchical grouping instead of of-
fering a loose set intuitively makes the interface better
manageable and capable of being integrated, as we will
show later.

(A3) A simplified and use case-specific data model designed
for a specific client reduces implementation effort on
client side in general as well as transferred data at
runtime.

2.1 An Additional Web Service Adaption Layer
In a first step, an additional layer is introduced: it imple-

ments the interfaces of its required target services and pro-

vides a web service-based interface for any clients (see Pre-
sentation layer in Figure 1). Operations that are performed
on data transferred between both layers, will be specified in
the next sections.

At the moment, there are two common ways to implement
web services: the SOAP standard and RESTful HTTP. The
latter is not a standard, but a set of design principles. Both
sides have their pros and cons: as Pautasso et al. [15, 17]
show, SOAP is more suitable for complex and static ser-
vices with higher quality of service requirements and with a
longer lifespan like for instance business processes, whereas
REST enables really loose coupling and is more appropriate
for ad hoc integration via the Internet. For REST, concrete
implementations can draw from a couple of well-known stan-
dards (HTTP, XML, URI), for which libraries are available
for most platforms. Compared to SOAP, thereby the foot-
print regarding traffic and system resources is also reduced,
which favours the deployment on remote devices like smart
phones or embedded devices. Since RESTful services shall
be hypertext-driven, no contract has to be declared. This
loose coupling enables the further developing of interfaces
without the need to adjust client implementations. Beyond
this, caching, clustering and load balancing is very well sup-
ported by REST. Since we want to create lightweight and
easily evolvable interfaces for remote clients with limited
resources, but without supporting complex constructs like
business processes or transactions, we choose REST for our
purpose.

Derived from issue (I1), we define the first requirement:

(R1) An adapter shall be added in the form of an additional
layer and it shall offer its interfaces as RESTful web
services.

The further implementation of the REST principles will be
explained in the following two sections.

DBMS 1

REST
classes

UCSI 1

DTO REST
classes

UCSI 2

DTO REST
classes

UCSI n

DTO

Ex
te

rn
al

se
rv

ic
es

DBMS 2 DBMS m

In
te

rn
al

se
rv

ic
es

Service 1 Service 2 Service m

A
pp

lic
at

io
n

la
ye

r
Pr

es
en

ta
tio

n
la

ye
r

...

...

da
ta

 m
od

el

(1) (2)
(6)

(3)(4)

DTO mapping

(5)

(3')(4')

Figure 1: Overall architecture: existing, domain-
specific application with additional use case-specific
interfaces.

2.2 Use Case-specific Interface
The above introduced additional layer is now specified in

more detail by designing use case-specific and simplified in-
terfaces. As mentioned before, the composed subsystems
usually offer a higher number of services and methods than

1393

needed for a specific use case. Moreover, they are grouped
in the existing subsystems, but there is no seamless interface
for all subsystems (cf. issue (I2)). Regarding this, one more
requirement is formulated:

(R2) The developer shall be able to explicitly select, which
services and methods are mapped by the adapter, and
at which place in the adapter structure they are acces-
sible.

One of the key features of REST is the resource-oriented
handling of any information. Fielding [6] calls a resource a
“conceptual mapping to a set of entities”, which can be a
document, a handler for a non-virtual, i. e., physical object
(like an e-bike), or a temporal service (e. g. the reservation
plan of an e-bike). Beyond this, the possibility to reference
a concept instead of a singular representation permits the
changing of a representation without changing all references
to that. Moreover, possibly complex and heterogeneous in-
terfaces can be hidden from the client. Thereby, a uniform
and seamless interface is created. An example is shown in
Figure 2. On the left side is the “conventional”, service-
oriented interface, and building on that, on the right side
the coupled, resource-oriented one. The service-oriented in-

createReservation(Reservation res,
 RentingStation station)
createReservation(Reservation res, Bike bike)
update(Reservation res, RentingStation station,
 Bike bike)
delete(int reservationID)
getReservations()

Booking

getPosition(int bikeID)
getStatus(int bikeID)

Location

/customer
/stations

/station 1

/station 2

/bikes
/bike 1

/bike 2

/bike 3

/reservations
/res 1
/res 2
/res 3

/reservations

/reservations

/reservations

/reservations

/reservations

Billing

Figure 2: “Conventional” service-oriented interface
and RESTful interface building on that.

terface offers an interface contract with several methods, in-
cluding (i) one for the creation of reservations at a specific
station, (ii) one for updating, and (iii) one for deleting ex-
isting reservations. In this case, the client has to implement
each of the three methods.

However, REST requires a so-called “uniform interface”,
which means a limited number of operations with a well-
defined semantics. In this case, the client only has to use
one of the HTTP commands on the respective resource: (i)
a POST request on the resource /stations/{id}/reser-
vations, or (ii) PUT and (iii) DELETE, respectively, on
/reservations/{id}, yielding a reduction of implemen-
tation effort.

In case another method is added to the backend, e. g.
createReservation(Reservation res, Bike bike)
to enable the reservation of a specific bike, the service-ori-
ented interface contract thereby will be broken, and the
client necessarily will have to implement the new contract.
However, in the case of RESTful interfaces, the backend will
offer a new resource like /bikes/{id}/reservations (ex-
emplary highlighted in Figure 2). The client can ignore the
new functionality, or use it through the well-known POST
command.

2.3 Use Case-specific Data Model
So far, the existing interface was changed from a non-web

service to a web service one, and it was made RESTful. The
advantages are obvious, but not new: without the fact that
we later want to develop a DSL coming along with a code
generator, it is only an ordinary RESTful interface.

But as determined in issue (I3), the domain-specific data
model might be more complex than needed by the client.
For that, building on the RESTful interface and employing
the Custom Data Transfer Object pattern, now the added
value is created:

(R3) The developer shall be able to design a use case-specific
data model: based on the domain-specific data model,
s/he shall be able to choose entities and attributes,
which will be encapsulated into a single DTO respec-
tive into the resource representation.

By choosing only needed domain-specific attributes, s/he
is able to design a use case-specific data model, which is a
subset of the domain-specific data model and specifically fits
on the certain client.

Commonly, backend systems are developed for a specific
domain, but they might be used by users with different
views. For example, an e-bike reservation and booking sys-
tem should allow customers to make reservations via a smart
phone app, but also provide resource management and billing
functionalities for the service operator as well as a location
functionality. Every view has its own sub-requirements re-
garding supported data. Therefore, the domain-specific data
model represents a superset of all sub-requirements. Advan-
tages are maintainability and extensibility, but at the cost
of a higher complexity of the transferred data: this causes
not only higher data traffic at runtime, but also more im-
plementation effort on client side.

As mentioned before, the REST principles propagate a
resource-oriented handling of all information. We take ad-
vantage of this by making all entities from the domain-
specific data model available via resources. The client shall
be able to retrieve and also to manipulate their representa-
tions. Again, we use the example introduced in Figure 2.
The corresponding data model is shown in Figure 3: it con-
sists of the basic reservation entity, the assigned e-bike, and
the station where the reservation begins. This data model
also supports other use cases like bike management, but is
overdone for a customer client that only shall display a list
of pending reservations. In the last section, we mapped the
getReservations() procedure into the /reservations-
resource, on which a GET-request has to be applied. In a
next step, we will define the representation, which the client
will receive. It is based on the existing data model, but is
customised for the specific use case. This is achieved by em-
ploying the Data Transfer Object (DTO) pattern, which is
known from the J2EE world and was originally introduced
for remote calls in EJB context. By combining multiple ob-
jects into one DTO, a reduction regarding data overhead is
reached. As in this case not only the quantity, but also the
data model complexity is crucial, the Data Transfer Object
is extended to the Custom Data Transfer Object pattern:
only attributes are added to the DTO, which are required
by the client.

As we see in the example shown in Figure 3, through a
selection of needed attributes, we can reduce the number
of required DTOs to only two (starting from four entities).

1394

Certainly, this means an alignment on one specific use case,
but for this use case, the complexity of the interface is de-
creased significantly.

Figure 3: Reservation: domain-specific data model
and client-specific DTOs.

2.4 A DSL for Interface Specification
After having introduced our approach, in principle we

could implement our interface in a general-purpose language,
for example Java. But since we do not want to concentrate
on technical details, a DSL-based approach combined with
a code generator is more suitable, which enables modelling
on a higher-level abstraction with less implementation ef-
fort. As mentioned before, the REST principles enable a
separation of resources and their representations, hence two
separated steps are carried out:

1. Designing the representations (respective DTOs), which
consists of creating a set of entities. This is done by
creating an XML schema (cf. Section 3.2).

2. The more complex part is designing the interface struc-
ture. Since not only the resource hierarchy has to be
defined, but also the coupling with the respective tar-
get methods has to be determined, a domain-specific
language was created. The meta model is shown in
Figure 4.

In a first step, an InterfaceContainer is defined, which con-
tains some general information of the interface like its name,
a Java package where output classes are generated to, and
a list of user roles, which are allowed to access the interface
(to reach a more fine-grained role concept, each resource
and even each mapping can have its own roles in the actual
implementation, but this is omitted for simplicity). The ac-
tual interface structure is built by one Resource referenced
as rootResource, and a set of subordinate Resources.

In the second step, one or more so-called Mappings are
defined for a Resource. For each Mapping, an AccessType is
defined as well as the target, which shall be coupled to that.
Therefore, a Target with attributes service and method is
defined.

Finally, the needed DTOs are defined. Therefore, ev-
ery Method gets an inputType and a returnType, which are
DataTypes. A DataType defines the corresponding class by
its dataType attribute. Furthermore, the optional attribute
generic enables to prepend a generic type, for example to
specify a list.

The DSL is demonstrated exemplary by the interface spec-
ification for the customer client use case in Figure 6.

Figure 4: Meta model of the DSL.

3. IMPLEMENTATION
After having introduced the basic concepts, the technolo-

gies employed at runtime as well as details of tool implemen-
tation are presented in the following. This section is divided
into two parts: in the first part, we show the interfaces’ run-
time implementation; in the second part, the realisation of
the DSL and its belonging code generator as well as the way
to design the DTOs is introduced.

3.1 Runtime
Since the interfaces shall be operated in environments of

different sizes, but particularly in combination with large
scale enterprise information systems, we build on the Java
Platform, Enterprise Edition. Java EE allows a faster and
less expensive development of highly available, secure, re-
liable, and scalable applications. Developers benefit from
being able to concentrate on the functional development of
the application, while infrastructure issues are taken by the
runtime environment.

In our case, mainly the provision of RESTful web services
is crucial, but also the coupling with the target services via
different technologies.

For providing RESTful web services, Java EE includes the
Java API for RESTful Web Services (JAX-RS) [10]. JAX-
RS enables the developer to create RESTful web services by
annotating Java classes with some specific annotations. The
application can be operated in different environments like a
standard Java SE runtime or a servlet container.

JAX-RS integrates Java Architecture for XML Binding
(JAXB) [9] as a mechanism for runtime un-/marshalling
Java objects, for example from/into XML or JSON. Un-
fortunately, there is only limited support for hypermedia as
the engine of state in JAX-RS (even the specification leads
admit that [22]). Therefore, we integrate the proprietary
atom implementation provided by RESTEasy [1], which is
our JAX-RS implementation.

The integration of the target services makes two aspects
necessary: (i) implementing the protocol of the respective
target service and (ii) mapping domain-specific objects into
DTOs and vice versa. Since this solution shall be extensible
for as many service protocols as possible, Java EE is a good
choice. It offers a set of different adapters to integrate vari-
ous components. By default, components can be integrated
via transactions (JTA), Remote Method Invocation (RMI-

1395

IIOP), CORBA (Java IDL), or messages (JMS). However,
the Java EE Connector Architecture (JCA) is especially in-
teresting. It enables the development of Java EE conform
adapters for any service, even legacy ones.

To realise the DTO mapping, an object factory is used.
This factory uses runtime-reflection, just as proposed by Sun
Microsystems in the Transfer Object Pattern, to instantiate
the target objects, and to copy the attributes. Identifiers of
source and target objects are determined by the developer
in our DSL, and are generated as Strings into the code of
the JAX-RS classes.

The common way of mapping DTOs and calling a tar-
get service is shown in Figure 1: after receiving a DTO
from a client, the REST class sends it to the DTO mapping
mechanism (1) and gets a domain model-specific object re-
turned (2). Taking this object, it calls its target service (3)
and gets a response back (4). This domain-specific object is
translated back into a DTO ((5) and (6)). Note, each UCSI
might use several services, i. e., we observe a 1:m relation.
The REST classes of UCSI 1, for example, utilise Service 1
and Service 2 indicated with (3’) and (4’), respectively.

3.2 Tool Support
For the implementation of the DSL, the Xtext frame-

work [2] is used. Xtext is a mature Eclipse project, which en-
ables the developer to create an own DSL and also provides
an Eclipse-based development environment for that DSL.
The syntax is modelled equivalently to the DSL meta model
shown in Figure 4, a code example is shown in Figure 6. The
belonging code generator is written in the integrated Xtend
language [2].

The generator creates the RAX-RS-annotated classes out
of the DSL code; based on the target services defined via the
service and method attributes, it retrieves the signatures of
the called methods from a data source (for example a WSDL
file or a database); this information is used to generate the
method calls as well as calling the DTO mapping, which
performs the object translation. Retrieving method signa-
tures, generating method calls as well as the JAX-RS code
are outsourced into their own Eclipse plugins. Thereby, us-
ing another data source or calling target services with a dif-
ferent technology (even several technologies simultaneously)
can be simply done by exchanging the respective plugins.

Figure 7 depicts a code snippet, which corresponds to lines
12 to 20 of the DSL example from Figure 6. The @Path
annotation at line 1 makes the BikeService and its meth-
ods accessible via the URL /customer/bikes, and the
@RolesAllowed annotation declares user roles allowed to
access this resource. Through the @GET annotation at line 7,
respective requests are mapped on the getReservations()
method, the @Produces annotation at line 8 determines
that the returned objects shall be marshalled to XML, con-
taining atom links. Furthermore, @AddLinks at line 5 de-
notes that atom links shall be injected into the returned enti-
ties, and @LinkResource at line 6 defines that all BikeDTO
entities shall have an atom link on this URI. Lines 11 to 14
implement the target service call through JNDI, since cur-
rently services are implemented as EJBs. The target service
is called in line 15, from line 16 to line 21, the transfor-
mation of the domain-specific list of Bikes into a BikeDTO
list is performed. Everything else like authentication, un-
/marshalling of objects, handling of HTTP connections, and
so on is done by the servlet container.

As mentioned before, the DTOs respective resource repre-
sentations are designed as XML schema; Eclipse provides the
XML Schema Definition SDK, which includes a graphical
editor and also a schema-to-class-compiler to create ready-
to-use JAXB-annotated classes from the schema.

4. CASE STUDY
This case study deals with a corporate e-bike sharing sys-

tem. Since nowadays IT infrastructures get more and more
important as a backbone for mobility services of this kind,
we integrate this e-bike sharing as case study for the pre-
sented approach.

A company’s branches are spread over a metropolitan
area and its employees often have to move between these
branches. Since going by public transports is very time con-
suming and parking situation is often bad in this area, the
company wants to introduce an e-bike sharing system to
provide a clean, healthy, and fast transport alternative for
its employees. They shall be able to locate a free bike via a
smart phone. If an appointment is fixed a long time before,
a reservation for a time slot shall be able, too. Since there
is only a closed group of users, no personalised bike access is
required like for B2C sharing systems. Instead, bikes have
locks with a combination known to all employees.

The case study considers the following components and
users and is depicted in Figure 5.

(i) Employees use smart phones to locate and reserve avail-
able e-bikes.

(ii) The backend infrastructure orchestrates between the
various devices and provides functionalities to them.

(iii) Client devices (e. g. smart phones) demand function-
ality provided by the backend.

(iv) Tracking devices, which are integrated into every e-
bike, enable to retrieve their location, and to detect
the charge level.

eCLOUD

Web browser

Mobile device

Figure 5: Overall topology of the case study.

The backend is the backbone of the whole system, which
offers the central business logic for management and reser-
vation of e-bikes, and for integrating tracking devices to lo-
cate them. It offers use case-specific interfaces for tracking
devices and customer smart phones.

The application is implemented with a 3-tier architecture:
the domain-specific part consists of business layer and per-
sistence (see Application layer in Figure 1), building on that,
several use case-specific interfaces are integrated, which rep-
resent the Presentation layer. The domain-specific applica-
tion is built on the Java EE-specification, therefore, we use
a JBoss Application Server 7.1.1, the interfaces are operated
at the integrated Tomcat 6-fork.

1396

4.1 Domain-specific Application
In technical terms, the domain-specific application is com-

pletely based on Java EE. Business logic as well as data
access objects are deployed as Enterprise Java Beans.

The business logic offers services for reservation manage-
ment and for location of bikes. The reservation service en-
ables clients to create, modify, and delete reservations for
a certain time slot. The location service receives position
events from the tracking devices, and enables user clients to
request the position of a certain bike.

4.2 Use Case-specific Interfaces
Two use case-specific interfaces are provided: (i) one for

tracking devices, which offers only one simple resource ac-
cepting a POST request with a PositionEventDTO, and (ii)
one regarding customer functionalities, e. g. for a smart phone
app. This structure is shown in Figure 6 as DSL snippet. It
offers functionalities to locate free bikes, make reservations
at a specific station or for a specific bike, and to retrieve, up-
date, and delete existing reservations. As mentioned before,
the interfaces use the JAX-RS-specification. JBoss AS inte-
grates the RESTEasy framework [1] as JAX-RS implemen-
tation. Additionally, two DTOs are defined (see Figure 3),
one to represent e-bikes (BikeDTO) and one for reservations
(ReservationDTO).

5. CONCLUSION AND FUTURE WORK
In this paper we presented a way to adapt existing, maybe

legacy services and to offer them via a RESTful web-based
interface. This is achieved by employing an interface descrip-
tion DSL supplemented by a code generator. The produced
productive Java code scales for use with enterprise applica-
tions due to the employed technology. A case study showed
the feasibility of the presented approach by dint of an e-
bike sharing facility. Advantages just as described at the
beginning of this paper were verified during the case study:

(i) Starting with only a syntactic description of the exist-
ing services, a developer is able to create a complete
web-based interface only with a few lines of code.

(ii) Up to a certain point, the presented tooling enables a
developer to concentrate on the essentials rather than
having to care about technical issues like platform spe-
cific peculiarities.

(iii) The generator-based approach enables a fast interface
evolution: changing a parameter like a resource URI
produces deployable code at the same moment.

But the evaluation also brought some weaknesses to the
light:

(i) The presented approach does not support developers
to comply with REST design constraints (as Szyman-
ski et al. [21] or Strauch et al. [19] do, for example), so
it is up to the developer to take care of REST principles
and not just to model ordinary HTTP-based APIs.

(ii) The mechanism for mapping between use case- and
domain-specific data models is based on runtime reflec-
tion, attributes to copy are compared by their names.
Therefore, the developer has to make sure that at-
tribute pairs have the same name and at least com-
patible data types.

Practical knowledge gained from the case study convinced
us that we are on a good way and can make a real contri-

1 InterfaceContainer {
interface customerInterface

3 role customer
rootPackage de.zielpuls.ebike.interfaces.customer

5 rootResource RootResource
}

7 Resource RootResource{
relativeUrl /customer

9 subResources (LocationResource, StationBookingResource,
BikeBookingResource, ReservationResource)

11 }
Resource LocationResource{

13 relativeUrl /bikes
Mapping{

15 accessType GET
service de.zielpuls.ebike.logic.LocationLogic

17 method getBikes
inputType

19 returnType generic List dataType BikeDTO
}}

21 Resource StationBookingResource{
relativeUrl /stations/{id}/reservations

23 Mapping{
accessType POST

25 service de.zielpuls.ebike.logic.BookingLogic
method createReservationForStation

27 inputType dataType ReservationDTO
returnType

29 }}
Resource BikeBookingResource{

31 relativeUrl /bikes/{id}/reservations
Mapping{

33 accessType POST
service de.zielpuls.ebike.logic.BookingLogic

35 method createReservationForBike
inputType dataType ReservationDTO

37 returnType
}}

39 Resource ReservationResource{
relativeUrl /reservations

41 subResources (SingleReservationResource)
Mapping{

43 accessType GET
service de.zielpuls.ebike.logic.BookingLogic

45 method getReservations
inputType

47 returnType generic List dataType ReservationDTO
}}

49 Resource SingleReservationResource{
relativeUrl /{id}

51 Mapping{
accessType PUT

53 service de.zielpuls.ebike.logic.BookingLogic
method updateReservation

55 inputType dataType ReservationDTO
returnType

57 },
Mapping{

59 accessType DELETE
service de.zielpuls.ebike.logic.BookingLogic

61 method deleteReservation
inputType

63 returnType
}}

Figure 6: Syntax example: client interface for e-bike
locating and reservation handling.

bution to the area of enterprise application integration. To
improve our approach and the belonging tools, we plan some
further work: (i) Implementation of further adapters: with
the current implementation, only EJBs can be integrated as
target services. Therefore, more adapter technologies shall
be implemented. For that, JCA is on top of our agenda. (ii)
Design support : as mentioned before, this approach does not
support in meeting the REST design principles. Therefore,

1397

@Path("/customer/bikes")
2 @RolesAllowed("customer")
public class LocationService {

4

@AddLinks
6 @LinkResource(value = BikeDTO.class)

@GET
8 @Produces("application/atom+xml")

public Response getBikes() {
10 try {

Context jndiContext = new InitialContext();
12 LocationLogicLocal locationService = (LocationLogicLocal) jndiContext.lookup(

"java:app/de.zielpuls.ebike.logic/LocationLogic!de.zielpuls.ebike.logic.LocationLogic");
14 jndiContext.close();

List<Bike> domainObjectList = loactionService.getBikes();
16 DtoTransformationLogic transformation = new DtoTransformationLogic();

List<BikeDTO> returnDtoList = new LinkedList<BikeDTO>();
18 for (Bike b : domainObjectList) {

returnDtoList.add((BikeDTO)transformation.createTransferObject(b,"de.zielpuls.ebike.dto.customer.BikeDTO",
20 "de.zielpuls.ebike.datamodel.Bike"));

}
22 return Response.status(200).entity(returnDtoList).build();

} catch(Exception e) {
24 //

} } }

Figure 7: Code example: generated client interface for location of e-bikes.

we will think about combining our approach with one of the
support processes presented in Section 1.1.

6. REFERENCES

[1] RESTEasy framework.
http://www.jboss.org/resteasy/.

[2] Xtext/Xtend project.
http://www.eclipse.org/{Xtext,xtend}.

[3] C. Engelke and C. Fitzgerald. Replacing legacy web
services with RESTful services. In WS-REST, pages
27–30, 2010.

[4] T. Erl, B. Carlyle, C. Pautasso, and
R. Balasubramanian. SOA with REST - Principles,
Patterns and Constraints for Building Enterprise
Solutions with REST. The Prentice Hall service
technology series. Pearson Education, 2013.

[5] R. T. Fielding. Architectural styles and the design of
network-based software architectures. Phd thesis,
University of California, Irvine, 2000.

[6] R. T. Fielding and R. N. Taylor. Principled design of
the modern Web architecture. In ICSE, 2000.

[7] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley Professional, 2002.

[8] M. Fowler. Richardson Maturity Model.
http://martinfowler.com/articles/
richardsonMaturityModel.html, 2010. [Online;
accessed February 16th 2013].

[9] Java Community Process. JSR 222: Java Architecture
for XML Binding (JAXB) 2.0, December 2009. Java
Specification Request.

[10] Java Community Process. JSR 311: JAX-RS: The
Java API for RESTful Web Services, November 2009.
Java Specification Request.

[11] M. Laitkorpi, J. Koskinen, and T. Systa. A
UML-based Approach for Abstracting Application
Interfaces to REST-like Services. In WCRE, 2006.

[12] M. Laitkorpi, P. Selonen, and T. Systa. Towards a
Model-Driven Process for Designing ReSTful Web
Services. In ICWS, 2009.

[13] Y. Liu, Q. Wang, M. Zhuang, and Y. Zhu.
Reengineering Legacy Systems with RESTful Web
Service. In COMPSAC, 2008.

[14] F. Marinescu. EJB Design Patterns: Advanced
Patterns, Processes, and Idioms. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 2002.

[15] C. Pautasso and E. Wilde. Why is the Web Loosely
Coupled? A Multi-Faceted Metric for Service Design.
In WWW, 2009.

[16] C. Pautasso and E. Wilde. RESTful web services:
principles, patterns, emerging technologies. In WWW,
2010.

[17] C. Pautasso, O. Zimmermann, and F. Leymann.
RESTful Web Services vs. “Big” Web Services: Making
the Right Architectural Decision. In WWW, 2008.

[18] S. Schreier. Modeling RESTful applications. In
WS-REST, 2011.

[19] J. Strauch and S. Schreier. RESTify: from RPCs to
RESTful HTTP design. In WS-REST, 2012.

[20] Sun Microsystems, Inc. Core J2EE Patterns - Transfer
Object. http://www.oracle.com/technetwork/
java/transferobject-139757.html, 2002.
[Online; accessed at September 18th 2012].

[21] C. Szymanski and S. Schreier. Case study: Extracting
a resource model from an object-oriented legacy
application. In WS-REST, 2012.

[22] S. Tilkov. JSR 311 Final: Java API for RESTful Web
Services. http://www.infoq.com/news/2008/
09/jsr311-approved. [Online; accessed at
February 18th 2013].

[23] S. Tilkov. REST und HTTP. Einsatz der Architektur
des Web für Integrationsszenarien, dpunkt. verlag,
2009.

1398

