
Searching the Deep Web Using Proactive Phrase Queries

Wensheng Wu, Tingting Zhong
University of North Carolina at Charlotte

{w.wu, tzhong}@uncc.edu

ABSTRACT
This paper proposes Deep2Q, a novel search engine that
proactively transforms query forms of Deep Web sources
into phrase queries, constructs query evaluation plans, and
caches results for popular queries offline. Then at query
time, keyword queries are simply matched with phrase queries
to retrieve results. Deep2Q embodies a novel dual-ranking
framework for query answering and novel solutions for dis-
covering frequent attributes and queries. Preliminary exper-
iments show the great potentials of Deep2Q.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases

Keywords
Deep Web; proactive search engine; natural language queries

1. INTRODUCTION
The Deep Web contains over 25 millions of online data

sources whose contents are typically only accessible through
their form-based query interfaces [4]. These data sources are
becoming indispensible resources for our daily life, from on-
line shopping, flight reservation, to searching for jobs. How-
ever, a serious problem with the form-based interfaces is that
users need to locate right sources, understand often complex
query forms, and pose separate form queries—an extremely
labor-intensive and painstaking process.

To address this challenge, one solution is to allow users to
pose keyword queries on search engines [4, 5]. The engines
will then reformulate the queries into form queries and pose
them to sources to obtain answers. However, this solution
often suffers from slow query response. One reason is that
query reformulation may take time since it involves many
challenging tasks: (1) query parsing, e.g., it needs to recog-
nize “books bill clinton 2012” contains an entity name, an
author, and a year; (2) query translation, e.g., it needs to
find appropriate sources (e.g., bookstores that accept queries
on author and year) and translate keyword queries into form
queries. Another reason is that data sources may be slow
in responding to queries and often multiple sources need to
be accessed to obtain the answers. To make matters worse,
keyword queries are known for their ambiguities. For exam-
ple, “books bill clinton” could mean “books written by bill
clinton” or “books about bill clinton” or both.

Copyright is held by the author/owner(s).
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Queries Results

m
an
ag
er Phrase queries

Query

Query
matcher

oc
es
so
r

Ph
ra
se

qu
er
y

Evaluation plans

compiler

Caches
Execution
engine

Execution plan

Q
ue

ry
pr
o

Amazon BN Powells…

Access path managerForm index

Amazon BN Powells

Figure 1: The architecture of Deep2Q

2. OUR PROPOSAL
We propose to tackle the problem from an opposite di-

rection: instead of transforming keyword queries into form
queries at query time, we propose a Deep Web search engine
that proactively transforms web forms into phrase queries
and constructs query evaluation plans (e.g., searching and
combining bill clinton books from Amazon and Barnes &
Noble) offline. For popular queries, the engine may also pre-
execute the queries and cache results to achieve fast query
response. Then at query time, the engine only needs to find
phrase queries similar to user keyword queries and retrieve
results by either executing the precompiled evaluation plans
or looking up in the caches.

We start by considering noun phrase queries of the form
“M N O” (e.g., “history books for kids”) where N is a head
noun (e.g., books) and M (e.g., “history”) and O (e.g., “for
kids”) are its pre-modifiers and post-modifiers respectively.
Each phrase query corresponds to one or more form queries
which, when executed, will access sources to obtain query
answers. Note that noun phrase queries are very common
on search engines [3]. However, our solution is generally
applicable to other query forms.

Advantages: First, phrase queries abstract away the te-
dious details of formulating form queries and accessing data
sources. They are in a sense mediators between user queries
and the data on the Deep Web. Second, it avoids the ex-
pensive parsing at query time: user queries can be simply
matched with phrase queries using standard IR techniques.
Third, phrase queries are more precise than keyword queries
and may be used to disambiguating keyword queries, e.g.,
refining “bill clinton books” into “books written by bill clin-
ton”. Lastly, the engine may cache results of popular queries
to enable instant response for these queries.

137



Figure 2: The search interface of Deep2Q

Challenges: First, we may not have access to logs of form
queries users posed on the Deep Web sources. Second, some
attributes (e.g., book author) can have many possible val-
ues. Third, there may be a large number of combinations
of values from different attributes. Thus a naive approach
of generating one phrase query for every attribute value and
combination of values may result in an excessive number of
queries that are rarely asked. Fourth, some attributes might
not even have values available on query forms.

3. Deep2Q SOLUTION
We present Deep2Q, a novel proactive search engine for

the Deep Web that addresses the above challenges. Figure
1 shows the architecture of Deep2Q which consists of two
major modules: phrase query manager and query processor.
The phrase query manager works offline and is responsible
for discovering phrase queries, constructing query evalua-
tion plans, and caching query results. It utilizes a form
index to speed up the search for form attributes that match
phrase queries and an access path manager to communicate
with sources for form submissions and result fetching. Then
at query time, the query processor takes user queries, finds
matching phrase queries, and obtains results from caches or
data sources. Figure 2 shows Deep2Q’s search interface.

Constructing phrase queries: Deep2Q employs a set of
rules for rewriting form queries into phrase queries. For
example, a rule may be: if a form attribute A is labeled as
“author”, create a phrase query “books written by [author]”
for every known author. The rules may be discovered from
the Web and added to the engine in a pay-as-you-go fashion
[6]. Since similar attributes (e.g., author) may appear over
many forms, this approach allows us to quickly bootstrap
the engine with a few popular queries to address the need of
a large number of users.

Discovering popular attribute values & form queries:
Deep2Q leverages query autocompletion features [2] of web
search engines to discover values of form attributes. For
example, it may pose an extraction query “books written
by”to the engines and extract authors (e.g., “el james”) from
completions (e.g., “books written by el james”).

Deep2Q uses the number of results from sources to gauge
the popularity of form queries. It employs an Apriori-like
algorithm [1] to prune overly general (e.g., returning almost
all books from Amazon) and rare queries. The algorithm
starts with one-attribute queries and progressively finds fre-
quent queries with multiple attributes.

Dual-ranking: Deep2Qmeasures the similarity of user key-
word queries with phrase queries in the engine using the Co-

20
30
40

Negative Positive

O
ne

at
tr. Pruned Total Source Time (s)

Amazon 1.86
Barnes & Noble .23

ll

0
10 0 100 200 300

Tw
o
at
tr
s

Pruned Total

Powells 22.75
McGraw Hill 4.02
Abebooks .18
Books a million 2.07

4000 4500 5000
(a) Discovering attribute values (b) Pruning infrequent form queries

… …
(c) Timing result

Figure 3: Results of evaluating Deep2Q

sine function (with tf ∗ idf term weights) by treating phrase
queries as short documents. Deep2Q measures the quality
of sources with respect to a phrase query based on several
key factors including the authoritativeness of sources, the
number of results, and communication costs.

More details on Deep2Q can be found in [7, 6]. Deep2Q is
an important first step toward realizing our vision in [6].

4. EXPERIMENTS
We now present several key experimental results [7].

(1) Discover attribute values from search engines: Figure 3.a
shows the number of positive (e.g., “obama”) and negative
(e.g., “kids”) values discovered for several book attributes
(e.g., author) using Yahoo!, Google, and Bing. We observe
that the majority of values discovered are positive.

(2) Discover frequent form queries: Figure 3.b shows that
50% (80%) of one-attribute (two-attribute) queries on the
Amazon query interface are pruned, with thresholds for gen-
eral and rare queries set to .9 and .001 respectively. Example
pruned queries are“romance books in 2011”and“biographies
for baby-3 years”. Overall, 87% of queries were pruned.

(3) Speed up query processing: Results using 10 book sources
(Figure 3.c) show that it took about .9s to process a query
using cached results in Deep2Q, while existing solution would
need up to 22s to retrieve results from sources.

5. CONCLUSIONS & FUTURE WORK
To the best of our knowledge, Deep2Q is the first proactive

engine for searching the Deep Web using phrase queries. It
combines the advantages of existing surfacing (caching for
fast response time) and virtual (retrieving fresh data when
needed) approaches to integrating the Deep Web [6].

We are currently conducting a large scale of experiments
to further evaluate our solution and investigate several key
issues. (1) To what extent can Deep2Q provide answers to
web queries? (2) Can the rewrite rules for form queries
easily be adapted to different sources? (3) How to properly
manage the caches in Deep2Q? (4) Can we combine Deep2Q
with existing search engines? We will also make Deep2Q
accessible online to solicit feedback from users.

6. REFERENCES
[1] R. Agrawal et al. Fast algorithms for mining association

rules in large databases. In VLDB, 1994.
[2] Z. Bar-Yossef and M. Gurevich. Mining search engine query

logs via suggestion sampling. PVLDB, 2008.
[3] X. Li. Understanding the semantic structure of noun phrase

queries. In ACL, 2010.
[4] J. Madhavan et al. Web-scale data integration: You can

afford to pay as you go. In CIDR, 2007.
[5] J. Madhavan et al. Google’s deep web crawl. PVLDB, 2008.
[6] W. Wu. Proactive natural language search engine: Tapping

into structured data on the web. In EDBT, 2013.
[7] W. Wu and T. Zhong. A proactive phrase query-based deep

web search engine. Technical report, UNCC, 2013.

138




