
Visually Extracting Data Records from the Deep Web

Neil Anderson
School of Electronics, Electrical Engineering and

Computer Science
Queen’s University Belfast

Belfast BT7 1NN, UK
nanderson423@qub.ac.uk

Jun Hong
School of Electronics, Electrical Engineering and

Computer Science
Queen’s University Belfast

Belfast BT7 1NN, UK
j.hong@qub.ac.uk

ABSTRACT
Web sites that rely on databases for their content are now ubiq-
uitous. Query result pages are dynamically generated from these
databases in response to user-submitted queries. Automatically ex-
tracting structured data from query result pages is a challenging
problem, as the structure of the data is not explicitly represented.
While humans have shown good intuition in visually understanding
data records on a query result page as displayed by a web browser,
no existing approach to data record extraction has made full use
of this intuition. We propose a novel approach, in which we make
use of the common sources of evidence that humans use to under-
stand data records on a displayed query result page. These include
structural regularity, and visual and content similarity between data
records displayed on a query result page. Based on these observa-
tions we propose new techniques that can identify each data record
individually, while ignoring noise items, such as navigation bars
and adverts. We have implemented these techniques in a software
prototype, rExtractor, and tested it using two datasets. Our experi-
mental results show that our approach achieves significantly higher
accuracy than previous approaches. Furthermore, it establishes the
case for use of vision-based algorithms in the context of data ex-
traction from web sites.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval—Clustering, Information filtering

Keywords
Data record extraction, vision-based data extraction, deep web data
integration

1. INTRODUCTION AND MOTIVATION
Web databases are now pervasive. Users retrieve information

from these databases by submitting HTML query forms. Query
results are displayed on a web page, but in a proprietary presenta-
tion format, dictated by the web site designer. We call these pages,
query result pages. Figure 1 shows a typical query result page from
Argos.co.uk. On this page each DVD is presented as a data record.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

Figure 1: Query Result Page from Argos.co.uk

In turn, each data record contains a collection of data items; in-
cluding the title, description, release date, availability, price and
customer rating, etc. as well as an image of the product. Any item
on the page that does not belong to a data record is called a noise
item, for example, a menu button or an advert. A query result page
is designed for a human to read rather than a computer to process,
thus there is no standard way to automatically extract structured
data from the page.

Automatic data extraction is the process of extracting automati-
cally a set of data records and the data items that they contain from
a query result page. Such structured data can then be integrated
with data from other data sources and presented to the user in a sin-
gle cohesive view in response to their query. For instance, there is
great commercial demand for comparison shopping search engines.
A user may wish to buy a DVD; a comparison shopping search en-
gine can extract data from many different online stores, integrate
the data and display it to the user. Other practical applications in-
clude flight and hotel booking sites, financial product comparisons,
property sales and rentals.

In this paper, we focus on the problem of data record extraction,
that is, to identify the groups of data items that make up each data
record on a query result page.

Data records on a query result page display regularity in their
content, structure and appearance. They exhibit structural and vi-
sual similarities: that is, they form visual patterns which are re-
peated on the page. This is because data records on the same site
are often presented using the same template. The displayed data is
in an underlying database, and as the data items for each record are

1233

jQuery'

Web''
Page'

Renderer'
'

WebKit'

Visual''
Block''

Modeller'

JavaScript'

Seed'
Block''

Selector'

JavaScript'

Data''
Record'
Block''

Selector'

jQuery'

Record'
Boundary'
Drawer'

Figure 2: rExtractor System Architecture

retrieved from the database (in response to the user’s query), the
same template is used each time to present the record.

Much of the existing work that deals with the extraction of data
records is based on the theme of identifying repeated patterns. The
common premise is to find and use the repeated patterns of data
records. The main differences between the existing approaches are
where they look for these patterns and how they use them in data
extraction.

Early approaches [2, 5] identify repeated patterns in the HTML
source code of multiple training pages from a data source in order
to infer a common structure or template, and use it to extract struc-
tured data from new pages from the same source. Other approaches
[4, 17] identify repeated patterns in the source code of a query result
page in order to directly extract data records and align data items in
them. However, these approaches are all limited by the rapidly in-
creasing complexity of source code. For instance, the widespread
use of Javascript libraries, such as jQuery, can make source code
structurally much more complex; thus these approaches start to fail.

Later approaches [11, 18, 20, 21] use the tag tree representation
of a web page to identify repeated patterns in the subtrees of the
tag tree. This representation is useful because it provides a hierar-
chal representation of the source code. However, the tag tree was
designed for the browser to use when displaying the page, and un-
fortunately does not accurately resemble the structure of the data
records on the displayed page. The use of scripts and other runtime
features contribute further to the differences between the structure
of the tag tree and the dynamically displayed web page.

The state-of-the-art approaches [13, 16, 19] identify visually-
repeated patterns using additional information displayed on a ren-
dered page. However, they all succumb to the same limitation: they
still rely on direct access to either the source code or the tag tree.

The approach in [12] is the first that uses primarily visual fea-
tures for data record extraction. However, this approach has several
other limitations caused by the granularity of its input data and how
it deals with noise items on a web page.

In addition, many of the current approaches [12, 16, 18, 19] start
by identifying a section of the page, referred to as the data-rich
section, which contains all of the data records. However, correctly
identifying the data-rich section can be problematic. There is a
risk that some data items may be omitted from, or unwanted noise
items incorrectly included in, the data-rich section. Furthermore, it
is possible to identify the wrong sub-section of the page entirely.

In this paper, we propose a novel visual approach to data record
extraction, which shows a strong correlation with human intuition.
Our approach is guided by how most humans expect query result
pages to be visually presented. This also influences web site de-
signers, who often present pages to meet human expectations.

A common convention is to place noise items, such as menus or
adverts, around the periphery of the page, reserving the centre of
the page for the data records. Furthermore, data items in each data
record are displayed together, forming what is known as a locality

constraint. As shown in Figure 1, query result pages follow these
conventions.

To make it easy for a human reader to perceive data items in each
data record as a group, designers display the data items repeatedly
in the same relative position in each data record. Furthermore, de-
signers also reserve the same horizontal space (or width) for each
data record. Originally they did so because human readers dis-
liked pages that required horizontal scrolling [9], therefore, the data
records on the page must have a uniform width so they would not
cause the page to exceed the screen width. Indeed this accepted de-
sign constraint contributes greatly to the regular visual appearance
of data records. Technical constraints also have a part to play. Each
data record on the page is displayed using the same template code,
which, when rendered, reinforces a repeated visual appearance and
therefore a similar composition for each data record.

A human reader uses the regularity of the visual-repeated pattern
and structure that appears when the data records are displayed on
the page to infer semantic relationships between data items and can
therefore group the data items into data records.

In summary, our main contributions in this paper are as follows:
First, we remove the requirement to identify the data-rich section
of a query result page. We propose a novel visual approach which
identifies, as a seed block, a single data item, which is a basic con-
tent block in a data record. We then implement our observations on
visual and structural regularity to group together only the data items
in each record. Second, our visual approach directly accesses a ren-
dering engine to retrieve positional information and visual features
of each item on the page, avoiding the need to interpret increasingly
complex HTML source code and tag trees.

The rest of the paper is organised as follows. The fundamentals
behind our proposed vision-based approach are presented in Sec-
tion 2. Solutions for identifying a record block for each data record
on the query result page are described in Section 3 and Section 4.
A summary of our demonstration system is given in Section 5. Ex-
perimental results are reported in Section 6 and finally, Section 7
concludes the paper.

2. VISUAL DATA RECORD EXTRACTION
In this section, we first introduce the visual block model (VBM)

to represent a rendered web page, which allows us to access the
positional information and visual properties of each item on the
page. Next, we present our method to measure the visual similarity
between the visual blocks in the model, followed by our definitions
of the spatial relationships between these visual blocks. Finally, we
present an overview of our approach.

2.1 Visual Block Model
The visual block model of a query result page is a product of the

tag tree and the Cascading Style Sheet (CSS) of the page. A layout
engine generates visual blocks for each node in the tag tree, accord-
ing to the instructions contained in the CSS. This process, called

1234

rendering, draws a rectangular box around the minimum boundary
of each visible node on the page. We refer to each box as a vi-
sual block. The position of each visual block is represented by its
four borders in the four directions on the two-dimensional plane.
The plane has its origin at the top-left of the page, with the x-axis
running from left to right and y-axis running from top to bottom.

Some of the visual blocks in the VBM, such as those outlined in
blue in Figure 1, represent the structural components of the query
result page. These blocks, which we call container blocks, can be
thought of as the scaffolding that holds the structure of the page
together. Each of these visual blocks contains at least one other
visual block, each of which we call a child block. The larger visual
blocks shown in Figure 1, such as those that appear to surround
each data record, contain many other blocks.

The remaining visual blocks in the VBM, such as those shown
in green in Figure 1, which we call basic blocks, represent the in-
dividual labels and data items displayed on the result page. These
blocks do not contain any other visual blocks. A container block
for a data record typically contains a number of these basic blocks.

For each visual block, we obtain 160 visual properties that can
be used to define the visual appearance of the block. We choose the
properties that have historically enjoyed good cross-browser rep-
resentation and are the most widely used by web site designers to
define the visual appearance of query result pages, for example,
fontWeight. Our approach uses these properties to determine the
visual appearance of each block and is flexible; additional visual
properties from the CSS specification can be incorporated easily.
We use the WebKit layout engine [10] to render query result pages,
however, our approach is independent of any specific engine.

In contrast to the VIPS Algorithm [3], used in other visual ap-
proaches, our VBM makes no prior assumptions regarding the or-
ganisational hierarchy of a query result page, it simply provides the
visual properties for each displayed item. Furthermore, our VBM
has finer granularity of visual blocks than the VIPS algorithm. For
instance, it can represent two consecutive visual blocks containing
two visually distinct texts whereas the VIPS cannot segment the
two texts into two visual blocks. As shown in Figure 2, the Visual
Block Modeller is a key component of our system architecture.

2.1.1 VBM vs. Tag Tree
While the VBM and the tag tree are related, they are not equiv-

alent. The tag tree is a complex representation of the HTML code
of the page, created for the browser to interpret and is only part
of the information required to render the page as the designer in-
tended. We choose to use the VBM in preference to the tag tree for
data record extraction for a number of reasons. First, nodes that are
close together on the tag tree may be spatially far apart on the dis-
played page and vice-versa. By considering only the visual blocks
in the VBM, our approach can ‘see’ the result page in the same way
that a human can. Crucially, this is how the page was designed: in-
ferred relationships, such as a group of data items that form a data
record, are much easier to identify in a visual context. Second, our
approach is insulated from developments in coding practices and
standards. Our approach relies on the rendering engine, accord-
ingly we are at liberty to make use of the best engine without the
need to adapt our VBM.

2.2 Spatial Relationship between Visual Blocks
We now define a spatial relationship between the visual blocks.

The structural regularity of data records on a query result page can
be recognised by identifying this spatial relationship of data items
in data records.

DEFINITION 1. Contains: A visual block contains another if
all of the borders of the later are inside those of the former.

For example, as shown in Figure 3, block F contains blocks A,
B, C, D and E.

2.3 Similarity between Visual Blocks
Our approach decides if two visual blocks have visual, width or

content similarity.

DEFINITION 2. Visual Similarity: Two visual blocks, A and B,
are visually similar if all of the visual properties of both blocks are
the same. Let PA = {Pa1, Pa2, ..., Pan} be a set of visual prop-
erties of A, and PB = {Pb1, Pb2, ..., Pbn} be a set of visual prop-
erties of B. The visual similarity between A and B, Sim(A,B), is
defined as follows:

Sim(A,B) =

{
1 ifPai = Pbi, i = 1, 2, ..., n;
0 Otherwise.

For example, as shown in green in Figure 1, the visual blocks
that contain the product name in each record on the query result
page have the same visual proprieties and are, therefore, visually
similar.

DEFINITION 3. Width Similarity: Two visual blocks have sim-
ilar widths if the width properties for both blocks are within a
threshold of 5 pixels of each other.

For example, as shown in blue in Figure 1, the visual block that
contains all of the data items of the first record, is the same width as
the visual blocks that contain all of the data items for the remaining
records. We say these blocks have similar widths.

Our approach also needs to decide if two blocks have block con-
tent similarity, that is, they have similar sets of child blocks. Our
observation is that two record blocks have a high degree of block
content similarity. This is because both record blocks are created
from the same template, repeated for each record on the page. For
example, the two record blocks, as shown in Figure 1, contain a
large number of visually similar blocks. In contrast, our observa-
tion is that there is little block content similarity between a record
block and a noise block. For example, the container block for the
‘By Price’ option in the left sidebar, which is the same width as, the
record blocks in Figure 1, does not share any visually similar child
blocks with the record blocks.

We use a variant of the Jaccard index [15] to measure block
content similarity between two visual container blocks. The in-
dex ranges between 0 and 1, where 1 means that the two blocks are
identical, and 0 means they have nothing in common. In our ap-
proach, we consider that each container block contains a set of child
blocks. We can then measure block content similarity between two
container blocks by a similarity index between two corresponding
sets of visual child blocks.

DEFINITION 4. Block Content Similarity: Two visual container
blocks have similar block contents if they have a similarity index
above a preset threshold.

For example, as shown in blue in Figure 1, the visual block that
contains all of the data items of the first record has a large num-
ber of child blocks that have the same visual appearance as those
child blocks in the visual blocks that contains all of the data items
of the remaining record. We say these blocks have block content
similarity. In Section 4.2, we formalise our usage of the similarity
index.

1235

Figure 3: Examples of Spa-
tially Related Visual Blocks.

Figure 4: An Ulam Spiral
Encountering a Basic Block.

Figure 5: Seed Block and Candidate Record Blocks High-
lighted

2.4 Data Record Extraction
Each data record on the page is represented by a visual block,

which contains all of the contents of the data record and nothing
else. We have completed a survey of 600 query result pages from
our data sets and found that in over 98% of cases there is a single
visual block that exactly contains each data record. The goal of our
approach is to identify this block for each data record on a query
result page. We call such visual blocks, record blocks.

Our approach starts by identifying a single basic visual block that
is very likely to be one of the basic blocks of a data record, we call
this the seed block. The seed block is contained in a set of larger
blocks, which we call the candidate record blocks, as only one of
them is the record block for the data record that the seed block is
in. Our approach must select the correct candidate record block as
the record block.

3. SEED BLOCK SELECTION
The goal of seed block selection is to identify a single basic vi-

sual block from the VBM which is part of a single data record. Let
us look at the organisation of a query result page. Since the Western
reading order is from top to bottom, and from left to right, it follows
that the data records should start in the top left of the page. How-
ever, most web pages have common navigation menu and header
structures that appear around the edges of the page. Thus, the start-
ing point of the data records can be shifted down and to the right.
As human readers expect this convention, they start looking for data
records in this area of the page. A study on web usability by eye
tracking [14] confirms that the highest priority area for content is
between the centre and the top left of the page.

Our approach starts at the centre of the page, furthest from the
noise blocks at the edges and closest to the highest priority area
for data records. We trace a clockwise Ulam Spiral [6], as shown

Figure 6: Data Record Boundaries Highlighted

in Figure 4, which naturally grows from the centre towards the top
left of the page. This is the area of the page most likely to contain
data records.

The Ulam Spiral was specially selected as it covers the largest
possible proportion of the highest priority area, before it reaches
the edges of the page. A simple plane between the centre of the
page and the top left corner of the page has, on the other hand, the
potential to miss the basic blocks belonging to sparsely populated
data records. Instead it could quickly reach the edge of the page
and select as the seed a basic block belonging to a noisy feature
such as a left menu.

The exponential growth of the spiral combined with its direction
of travel (clockwise) ensures that it shows bias to the area between
the centre and the top left of the page thereby covering more of the
highest priority area than is possible for a simple plane cover. As
shown in Figure 4, the spiral terminates when it first encounters a
basic block. This block is taken as the seed block. For our running
example, the seed block is shown in Figure 5, highlighted in purple.

4. DATA RECORD SELECTION
The goal of data record selection is to identify a set of container

blocks from the VBM, one block for each of the data records on the
query result page.

The seed block is contained inside a number of container blocks,
each of which provides a structure on the page. Examples of these
container blocks are shown in Figure 1, highlighted in blue. By
isolating only the container blocks in which the seed block is actu-
ally contained, our approach identifies the set of candidate record
blocks, as shown in Figure 5, highlighted in orange. We observe
that one of these candidate record blocks is the record block for the
data record and furthermore, this visual block has the similar width
to the record block for each of the records on the same query result
page.

4.1 Getting Candidate Record Blocks and Clus-
tering Container Blocks

The seed block is a basic block, which is contained inside one
or more of the container blocks. As shown in Figure 5, the seed
block, which was selected in the previous step, is contained inside
a number of container blocks, highlighted in orange. As one of
these blocks is the record block, all four are taken as the candidate
record blocks. Next, our approach filters the set of all container
blocks on the page, discarding any block that is not the same width
as one of the candidate record blocks. Our approach uses a one-

1236

pass algorithm to cluster the filtered container blocks into a strict
partition based on block width. This step creates a number of clus-
ters, one of which contains the record blocks. In our example, the
algorithm would create four clusters, one for each of the candidate
record blocks.

4.2 Measuring Block Content Similarity
Our approach uses a similarity measure to determine if two con-

tainer blocks have similar block contents. Assume that block A
contains a set of child blocks {a1, a2, ..., am} and block B con-
tains a set of child blocks {b1, b2, ..., bn}.

It is reasonable to expect that a container block may contain more
than one child block with the same visual properties. For example,
a data record on a car sales web site may contain an individual
child block for each feature of the car, such as the engine size,
number of doors and fuel type. These child blocks could share the
same visual properties. Accordingly, our approach uses a multi-
set representation for each container block. This generalisation of
the notion of a set, in which members may appear more than once,
allows our approach to represent the child blocks of a container
block.

Our approach uses a one-pass algorithm to cluster each of the
child blocks contained in a set into a strict partition based on their
visual similarity. The function Sim, defined in Definition 1, is used
for this purpose. Two child blocks, a and a′, are clustered together
if Sim(a, a′) = 1. So a set of child blocks, A, is clustered into a
strict partition Ac = {A1, A2, ..., Am}.

For instance, assume that container block A contains four child
blocks, a1, a2, a3 and a4. Two child blocks, a1 and a2, are visually
similar, while a3 and a4 are visually distinct. The corresponding
multi-set, A, is clustered into a set of subsets, Ac, where each sub-
set in Ac represents a single cluster:

Ac = {{a1, a2}, {a3}, {a4}} (1)

Select one child block from each cluster in Ac as its representa-
tive, so we have a set of representative child blocks, Ax, for Ac:

Ax = {x1, x2, ..., xm} (2)

Given two sets of visual blocks, A and B, we use our similar-
ity measure to find the block content similarity between A and B,
defined as follows:

SimBlockContent(A,B) =
|A ∩B|
|A ∪B| (3)

We define an indicator function for Ax as follows:

1Ax(xi) = |Ai| xi ∈ Ax ∧Ai ∈ Ac, for i = 1, 2, ...,m (4)

Assume that B is clustered into Bc and By = {y1, y2, ..., yn} is
a set of representative child blocks for Bc. We define an indicator
function for By as follows:

1By (yj) = |Bj | yj ∈ By ∧Bj ∈ Bc, for j = 1, 2, ..., n (5)

We then have:

|A ∩B| =
m∑
i=1

n∑
j=1

min{1A(xi), 1B(yj)}|Sim(xi, yj) (6)

|A ∪B| =
m∑
i=1

n∑
j=1

max{1A(xi), 1B(yj)}|Sim(xi, yj)

= 1 + |A−B|+ |B −A|

(7)

where

|A−B| =
m∑
i=1

n∑
j=1

1A(xi)|Sim(xi, yj) = 0

and

|B −A| =
m∑
i=1

n∑
j=1

1B(yj)|Sim(xi, yj) = 0

If SimBlockContent(A,B) is above a preset threshold, A and
B are considered to have similar block contents.

4.3 Selecting Record Blocks
Only one of the candidate record blocks represents the container

blocks that provide the structure for each data record on the page.
The other candidate record blocks represent container blocks that
are used to provide structure to other areas of the page. By select-
ing the candidate record block, which has content similarity to the
maximum number of container blocks, our approach identifies the
blocks for each data record.

5.
rExtractor [1] is implemented as a Java application, built in Eclipse,

with an integrated WebKit browser that allows us to visualise the
results of our data record extraction algorithms. In the demonstra-
tion we will exhibit the five modes of operation of rExtractor, each
of which has been designed to demonstrate a different aspect of our
vision-based approach. Each mode can be independently selected
from the Java application. They are:

• Render Only Mode: rExtractor implements the WebKit browser
engine to render an input query result page. No visual blocks
are highlighted in this mode.

• Debug Mode: rExtractor highlights each visual block on the
page by overlaying a colour-coded line onto the boundary of
the visual block. For example, the output from this mode is
displayed similarly to the example shown in Figure 1.

• Seed Block Mode: rExtractor highlights only the seed block
on the query result page. The seed block is highlighted in
purple, this is displayed similarly to the example seed block
shown in Figure 3. As the algorithm implemented a Ulam
Spiral to locate the seed block, the path of the Spiral along
with its intersection with the seed block is also displayed.

• Candidate Data Record Block Mode: rExtractor highlights
the candidate data record blocks that contain the seed block.
The candidate data record blocks are highlighted in orange,
and are displayed similarly to the example candidate data
record blocks shown in Figure 5.

• Data Record Block Mode: rExtractor highlights the bound-
aries of data record blocks for each data record on the query
result page. The boundaries of data record blocks are high-
lighted in red, and are displayed similarly to the example
shown in Figure 6. The demonstration also includes an op-
tion to visualise the block contents of each data record block,

1237

 DEMONSTRATION

the boundaries of these visual blocks are highlighted in light
orange.

A sample of the rExtractor functionality is available as a
screencast online at: http://goo.gl/8O7st

In the screencast, we use the rExtractor to extract the data
records from a number of example query result pages. These
include modern query result pages in which the data records
are arranged in 1) a grid structure and 2) a single column
structure. We show that rExtractor is able to extract data
records from pages containing either arrangement of data
records. For each query result page, we demonstrate each
mode of operation available in rExtractor in sequence.

6. EVALUATION
We compared the performance of rExtractor with that of ViNTs

[19], a state of the art extraction system available on the web, which
is based on both visual content features and HTML tag structures.

In our experiments, we used two data sets, DS1 and DS2, derived
from third party sources [7, 19]. DS1 contains 752 data records and
was used to compare the performance of rExtractor with that of
ViNTs. DS2 contains a further 11,458 data records and was used to
evaluate the performance of rExtractor on a large dataset. In total
our data sets contained 12,210 data records from the domains of
Books, Music, Movies, Shopping, Properties, Jobs, Automobiles
and Hotels.

Table 1: Results for DS1 and DS2
DataSet Algorithm Avg. Precision Avg. Recall

1 rExtractor 95.5% 96.3%
1 ViNTs 46.3% 48.9%
2 rExtractor 97.0% 95.5%

On DS1, rExtractor achieved an average Recall of 96.3% and
an average Precision of 95.5%. This is compared to ViNTs which
achieved an average Recall of 48.9% and an average Precision of
46.3% across the same dataset. Detailed analysis of the results for
ViNTs found that they identified a large number of false positive
data records (427 in total). For example, they often selected a page
navigation menu as the data-rich section, and then extracted each
menu item as a false positive data record. In these cases, it was
then impossible for ViNT to extract the correct data records. Con-
sequently both their Recall and Precision values were negatively
impacted.

Conversely, the seed block selection technique implemented in
rExtractor selected correctly a basic visual block contained in a
data record block in all of the test cases and rExtractor identified
very few false positive data records. This demonstrates that our
approach works effectively without having to explicitly identify a
data-rich section. rExtractor also preformed very well on DS2,
achieving an average Recall of 96.3% and an average Precision of
95.5%.

7. CONCLUSIONS & FUTURE WORK
This paper presents a novel approach to the automatic extraction

of data records from query result pages. Our approach first identi-
fies a single visual seed block in a data record, and then discovers
the candidate record blocks that contain the seed. Next the con-
tainer blocks on the page are clustered and a similarity measure is
used to identify which of these blocks have similar contents to each
candidate record block. Finally, our approach selects the cluster of
visual blocks that correspond to the data records.

In future work, we plan to extend our approach so that 1) the sim-
ilarity threshold, used to determine if two container blocks have
similar block contents is set automatically by a machine learning
technique and 2) the data items contained in each data record are se-
mantically labelled using the vocabulary provided by Schema.org[8].

8. REFERENCES
[1] N. Anderson and J. Hong. Visually extracting data records

from query result pages. In APWeb Conference, 2013.
[2] A. Arasu and H. Garcia-Molina. Extracting structured data

from web pages. In SIGMOD Conference, pages 337–348,
New York, NY, USA, 2003.

[3] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content
structure for web pages based on visual representation. In
APWeb Conference, pages 406–417, 2003.

[4] C.-H. Chang and S.-C. Lui. Iepad: information extraction
based on pattern discovery. In WWW Conference, pages
681–688, New York, NY, USA, 2001.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web sites. In
VLDB Conference, pages 109–118, San Francisco, CA,
USA, 2001.

[6] http://mathworld.wolfram.com/PrimeSpiral.html. Prime
spiral, 2012.

[7] http://metaquerier.cs.uiuc.edu/repository/datasets/tel 8/.
Tel-8 query interfaces, 2004.

[8] http://schema.org/. Schema.org, 2013.
[9] http://www.useit.com/alertbox/20021223.html. Jakob nielsen

- usable i.t., 2002.
[10] http://www.webkit.org/. Webkit - layout engine.
[11] B. Liu, R. Grossman, and Y. Zhai. Mining data records in

web pages. In SIGKDD conference, pages 601–606, New
York, NY, USA, 2003.

[12] W. Liu, X. Meng, and W. Meng. Vide: A vision-based
approach for deep web data extraction. IEEE Transactions
on Knowledge and Data Engineering, 22:447–460, 2010.

[13] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E.
Moser. Extracting data records from the web using tag path
clustering. In WWW Conference, pages 981–990, 2008.

[14] J. Nielsen and K. Pernice. Eyetracking Web Usability, pages
97–110. New Riders, first edition, 2010.

[15] R. Real and J. M. Vargas. The probabilistic basis of jaccard’s
index of similarity. Systematic Biology, 45:380–385, 1996.

[16] K. Simon and G. Lausen. Viper: augmenting automatic
information extraction with visual perceptions. In CIKM
Conference, pages 381–388, New York, NY, USA, 2005.

[17] J. Wang and F. H. Lochovsky. Data extraction and label
assignment for web databases. In WWW Conference, pages
187–196, New York, NY, USA, 2003.

[18] Y. Zhai and B. Liu. Web data extraction based on partial tree
alignment. In WWW Conference, pages 76–85, New York,
NY, USA, 2005.

[19] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully
automatic wrapper generation for search engines. In WWW
Conference, pages 66–75, New York, NY, USA, 2005.

[20] H. Zhao, W. Meng, and C. Yu. Automatic extraction of
dynamic record sections from search engine result pages. In
VLDB Conference, pages 989–1000, 2006.

[21] H. Zhao, W. Meng, and C. Yu. Mining templates from search
result records of search engines. In SIGKDD Conference,
pages 884–893, New York, NY, USA, 2007.

1238

