End-User Creation of Social Apps by Utilizing Web-based
Social Components and Visual App Composition

Juwel Rana, Sarwar Morshed, Kare Synnes
Department of Computer Science, Electrical and Space Engineering
Luled University of Technology

. SE-97187, Luled, Sweden
{juwel.rana, muhammad.morshed, kare.synnes}@ltu.se

ABSTRACT

This paper presents a social component framework for the
SatinIl App Development Environment. The environment
provides a systematic way of designing, developing and de-
ploying personalized apps and enables end-users to develop
their own apps without requiring prior knowledge of pro-
gramming. A wide range of social components based on
the framework have been deployed in the Satinll Editor, in-
cluding components that utilize aggregated social graphs to
automatically create groups or recommending/filtering in-
formation. The resulting social apps are web-based and tar-
get primarily mobile clients such as smartphones. The paper
also presents a classification of social components and pro-
vides an initial user-evaluation with a small group of users.
Initial results indicate that social apps can be built and de-
ployed by end-users within 17 minutes on average after 20
to 30 minutes of being introduced to the Satinll Editor.

Categories and Subject Descriptors

H.3.5 [Online Information Services|: Web-based ser-
vices; H.4.3 [Communications Applications]: Social apps,
Group-based apps;

General Terms
Mashup, Social apps;

Keywords

Component-based social app development, Tools for social
app development, Social data, Mobile social app;

1. INTRODUCTION

Popular social media services such as Facebook?, LinkedIn?,
Google+2 and Twitter? are predominantly used today as
web-based applications on personal computers or as apps on
mobile devices such as smartphones [14]. The availability of
these services drive the technical development where, for in-
stance, smartphones without a significant number of apps

*Recently moved at Green University, Bangladesh
"http:/ /www.facebook.com/
http://www.linkedin.com/
Shttp://plus.google.com/
*http://www.twitter.com/

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink

to the author’s site if the Material is used in electronic media.

WWW 2018 Companion, May 1317, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

1205

are less attractive to users [10]. There is, thus, a strong in-
centive to make it easier to build and deploy social media
services, while also offering possibilities for personalization
and more effective social distribution mechanisms [26, 25].

Many social media services provide different tools for shar-
ing presence information, sharing multimedia contents and
performing collaboration activities [11, 8]. Facebook, Twit-
ter, and Google+ all provide developer APIs for developing
new apps. These APIs can also be used for integrating social
features on services like Netflix®, Spotify®, and YouTube”.
Netflix is a video streaming service that uses the Facebook
platform APIs for user authentication as well as for sharing
user experience when watching movies. Moreover, Facebook
statistics show that by the end of 2011 there were more than
7 million social apps and websites that utilized the Facebook
platform.

Today, developers are also able to design and develop
mashup apps which typically contain more than one source
of information to enhance the functionality or the presenta-
tion [27, 12, 16]. For example, police statistics and Google
Maps can be integrated with a mashup app by combining
the crime records for each city street.

However, users without programming knowledge are nat-
urally often fall behind with respect to social app develop-
ment. The main reason is that the social networking plat-
form APIs are designed in such a way that code augmen-
tation is necessary for adding social features to apps [1, 2,
7]. The focus of this paper is, therefore, on the following
research question:

“How can end-users’ social and communication data be
captured from various data sources and then be utilized by
the end-users to compose social apps?”

To answer this question, this research extends current
mashup technologies for social apps in two ways. Firstly,
it provides new tools and techniques for social app develop-
ment through the Satinll App Development Environment,
where the Satinll Editor allows end-users to visually com-
pose social apps that are then compiled into web-based apps.
This makes it easy to create personalized web-based social
apps [6, 5] for communication and interaction that lever-
age the power of social computing APIs. Secondly, the ed-
itor hides the complexity of associating social networking
APIs from the app developers’ perspective, such that anyone

Shttp://www.netflix.com/
Shttp:/ /www.spotify.com/
"http://www.youtube.com/



should be able to create a simple app. The social network-
ing APIs are wrapped in components for this reason and
developers create apps by putting components together vi-
sually. At present, 15 components for accessing and utilizing
data related to social networks have been published in the
SatinII App Developer Environment, including components
that wrap Facebook and LinkedIn functionality [4].

This paper proposes a component-based approach to de-
velop social apps, where so-called social components wrap
fundamental functionalities of social media service APIs such
as social data collection, social data visualization, text com-
munication, and so on. For example, one component can
retrieve birthdates from a user’s social networking service
and a messaging component sends text messages to a list
of contacts. Thus, by composing these two components, a
user is able to compose a social app for sending birthday
wish messages (automatically) to the friends in his social
network.

An important feature is that social components can pro-
vide new ways of managing contacts and initiating communi-
cation. For instance, using the social components proposed
in this paper, users are able to generate mashups to visu-
alize global contacts, forming groups by adapting contexts
[26], and connecting social contacts for different interaction
purposes [25].

The overarching aim is to minimize the gap between the
traditional app developer and non-programmers, or more
precisely, enabling end-users to develop social apps by us-
ing a component-based visual interface in a web browser
while utilizing intuitive interaction techniques such as drag-
and-drop. By doing this, developers are not required to
know programming languages such as JavaScript, PHP, or
HTML5. In other words, very complex functions can be
made simple to use and thus enable end-users to create pow-
erful personalized social apps. However, the Satinll Editor
[3] itself is not the focus of this paper. Instead, we study
the potential impact of end-users being capable of building
apps based on social components.

This paper presents an initial study with 20 participants,
with and without programming experience, that collects par-
ticipant feedback from developing social apps using the Sa-
tinll Editor. We present three different social app devel-
opment scenarios to the participants and measure different
factors during the process, such as the average time for app
development and the functionality of the composed apps.
During the study, the average time taken for app develop-
ment was 17 minutes, after 20 to 30 minutes of introduction,
which indicates the potential impact of the social compo-
nents and the Satinll Editor.

The rest of the paper is organized as follows: Section 2
provides related work, Section 3 describes the framework
for social components, Section 4 presents an overview of the
social components in the context of SATIN platform, Sec-
tion 5 provides an evaluation and the results of the social
component user study, and Section 6 provides a discussion
and future work. Section 7 concludes the paper.

2. RELATED WORK

The literature shows there are several graphical tools [17,
27, 28] that are already available for making mashup apps.
By using these tools, users are able to create different kinds
of apps without specific programming skills. In most cases,
users use the drag-and-drop interfaces of these tools to com-

1206

pose different visual objects or components to create mashup
apps. However, none of these tools focus on social apps com-
position and there is no clear indication to improve these
tools for social apps composition.

Liu et al. have proposed a mashup platform using service
oriented architecture (SOA) [17]. The proposed architecture
can be used by users to create their own service composi-
tions. The authors provide a generic component model for
the mashup architecture, which is generally similar to our
component model. The model proposed in this paper fo-
cuses, however, on social components in particular.

Wong presents MARMITE as a mashup platform that of-
fers a set of components and allows users to create their own
mashup apps [27]. MARMITE allows users to extract infor-
mation from one or more web pages, process or manage data
flow and integrate data for different outputs in map-based
services or text files. By comparison, the approach proposed
in this paper utilizes data from the data providers’ plat-
form through proper authorization protocols that enables
the users to build more personalized social apps.

iSocial describes important aspects of social networks and
services composition on a mashup framework [18]. iSocial
shows that social computing may influence sharing, compe-
tition and collaboration among the mashup framework users.
However, it would be better if users were able to use their
existing social networks information to influence sharing and
collaboration. In our approach, we provide several compo-
nents that retrieve information from the users’ existing social
networks and integrate that information in components for
building personalized social apps.

Intel Mash Maker is a web extension to existing web browsers

that allows users to expand the page with information from
other websites [13]. A user can create a new mashup and
add intelligence to the mashup with Mash Maker. After
learning about the new mashup, Mash Maker suggests this
new mashup to other developers.

Jung and Park propose an ontology-based mashup cre-
ation system that enables end-users to use different kinds
of web-based data sources to construct a mashup [15]. This
system utilizes a mashup rule language for combining con-
tent from multiple websites, which requires end-users to
learn the rule language first in order to be able to compose
mashup apps.

Marcio et al. propose a framework for building intelligent
social apps by exploiting Facebook and FourSquare social
network data [19]. The authors identify several challenges
regarding using data from social networks, including privacy.
They also describe social data as characterized by a large
search space of user-generated data. Our proposed frame-
work is able to deal with those issues since it is designed to
adapt information of any kind from social networks and to
support developers without requiring programming skills.

Berners-Lee et al. proposed a platform called Tabulator
which links Resource Description Framework (RDF) data
in order to create new apps [9]. Tabulator allows users to
search an RDF graph in a tree structure, which enables Tab-
ulator to create tables, Google maps, calendars, timelines,
etc.

Morbidoni et al. present "Semantic Web Pipes” which is
a powerful tool to create RDF-based mashups [21]. This
tool aggregates and manipulates the content based on dif-
ferent RDF data. The semantic web pipe supports operation



I 1
: Contextual Contextual Social |
1 Social ocCla Social LinkedIn Facebook 1
1 Filter SloLg Sroue C Ranker Data Data
I Formation Visualizer Omponents 1
1
| e e e e e e e e e e e e e o e e o o e — — — — — — — — — — — — —— ——————— 1
Social Data Aggregator and Analyzer
Co T T T
I Social Data Adapter |
I 1
: [ Facebook ’ [ Twitter ] [ LinkedIn J t Call-logs } [ Location ] [ SMS ] :

Figure 1: The Social Component Framework

ranging from straightforward aggregation to complex collab-
orative editing and the filtering of distributed graphs.

In the next section, we discuss the framework for social
components, which illustrates a new way of utilizing hetero-
geneous social APIs from a single interface.

3. SOCIAL COMPONENT FRAMEWORK

Figure 1 shows a generalized and simplified framework for
social components. The figure contains three different lay-
ers. On the bottom layer, social data sources are connected
to fetch users’ social networking data, for example Facebook
data, Twitter data, LinkedIn data, and so on. Apart from
the social networking services platform APIs, other APIs
are used in this layer to fetch email logs, call logs, calen-
dar events, and location logs. The middle layer provides
a temporary storage of the users’ social data, performs ag-
gregation and analysis on those data to offer different func-
tionalities such as ranking social contacts and so on. The
methods that are used for processing and ranking user data
are described in other papers [24, 23]. Actual social compo-
nents perform from the top layer. For example, in Figure 1,
the top layer shows components such as social ranker, con-
textual group visualizer, and so on, accessible by end-users.
Here, all the components are shown in a generic manner.
For example, the Linked Data Component and the Face-
book Data Component fetch data from external sources and
the Social Ranker Component and the Contextual Group
Visualizer Component process those data by adding func-
tionality. Figure 2 shows a classification model for social
components. The Satinll Editor’s interface can be consid-
ered as representative of the top layer in comparison to the
social component framework.

Idea development for some the social components is in-
spired by the previous research work on Aggregated Social
Graph (ASG) Service [23, 22]. The ASG service measures
individuals’ social strength by analysing communication his-
tory.

During component development, it is found that various
components have different levels of complexity. For instance,
in the case of social components, most of the components are
based on external Web/REST APIs. Therefore, we find it
important to identify different classes of components that

1207

need to be developed. We primarily classify two groups of
components, namely core components and supporting com-
ponents.

Core components are the main social components such as
social filter, social data adapter and so on. Many of these
classes of components have been created and deployed to
the Satinll Editor. More information about different social
components is available on the social distribution testbed
website [4]. There are some components that help when trig-
gering or labelling apps, which we called supporting compo-
nents. In the component library of the Satinll Editor, Trig-
gerButton and Lavel, are considered for generic purposes
and classified as supporting components. We find it impor-
tant to provide a classification model of components to help
social app developers. The classification can be helpful for
finding appropriate components for app development. Fig-
ure 2 illustrates the social component classification model.

The core components are sub-divided into eight different
types of core components and are listed as follows:

e Social Data Adapter Components: This class of com-
ponents adapts social data from social networking sites
using the users’ credentials. The data is stored in the

Cloud for context reasoning.

Social Data Connector Components: This class of com-
ponents provides an interface to communicate between
data sources and other components that utilize data.

Social Data Processing Components: These compo-
nents apply unified data representation [24] to enhance
data mining within social data sources.

Social Data Reasoning Components: These compo-
nents implement different logic on the social data to
a users desired apps.

Visualization Components: Visualization components
display different forms of social data. For example, if
a processing and reasoning component makes a social
group based on a user’s social data, visualization com-
ponents can show this group in grid view or graphical
tree view.



ExtEdtor | Give feadback Hop | n MyApp Save app

Matching Components

BarGraph
B gagrapn,

@ Countdown

EnergyGauge

I o—

Gauge

T r——

]| GoosleCalendarRetriover
L nkiiog
foventtakan

fromthe cale

Figure 3: A sample social app composition in the Satinll Editor

e Smart Object Components: Smart object components modern web browser (both on desktop and mobile devices)
provide interfaces for lightweight devices with messag- should be able to run SatinII-based mobile apps.

ing and web connectivity functionalities. Data adapting (or collecting) components along with other

supporting components aggregate users’ different social net-

e Messaging Components: These components provide work data. Data aggregating components understand the

different options for sending messages such as email, format of the stored social data and aggregate them as a

posting to social networks, SMS, and so on. single user’s social data based on a particular context key

) or as a whole data stream. Later, this data resource can
® Locat.zon-Based Compqnents: These cqmponents use be analyzed and reused by data processing and analyzer
lgcatlon APIs and §oc1a1 network location-based ser- components in order to create a user’s personalized social
vices such as Checkin. apps. Data processing and analyzer components are em-
bedded with specific intelligence to perform different kinds
of data processing and analysis such as a user’s social in-
teractions, social media distribution, interests, location, etc.
Data visualization components are used to show a user’s
aggregated social graph either in graphical form or in text
form.

In the current model, supporting components are not di-
vided into sub-categories. Since this paper focuses on social
app development, the current model provides details only
on social components.

The next section briefly covers the social components in
the context of SATIN platform.

4. INTEGRATING SOCIAL COMPONENTS { ‘"Friendsname": "Test User",

IN SATIN PLATFORM Juserid’: 1323732759,
username": "t.user",
As mentioned in Section 3, different kinds of core social "birthdate": "1982.02.20",

components along with supporting components have been "email": "t.user@socialnetowrk.com",
developed and simulated. Users social data are embedded "profileurl": "http://www.socialnetwork/t.user",
as social data components and integrated with the SATIN "movies": "ironman, avatar",
platform where end-users without any programming knowl- "interests": "programming, research, soccer",
edge could create their own social apps. Additionally, other "picture": "https://a.akama.net/3_t.jpg",
social components embed intelligence that could exploit so- "contextkey": "stanford,stockholm,kth,ltu,"
cial data to create social apps. In our case, the Satinll Edi- }
tor [3] is used as a testbed for simulating and evaluating the
proposed app creation environment. The background of the Listing 1: JSON properties for profiling a friend’s basic in-
SatinIl Editor is beyond the scope of this paper, however formation
details can be found online [3]. Social components are based
on Web Technologies (i.e., HTML5, JavaScript, AXIS2 Web Different kinds of social data adapters (e.g., LinkedIn Data,
Services and so on), which enable users to run and test their Facebook Data, Gmail Logs, etc.) have been developed and
apps regardless of the type of device. For example, any tested in order to collect users’ data from these data sources.

1208



Social Data
Adapter
Components

Social Data
Connector
components

Smart Object
Components

L

Core
Components

Visualization
Components
Components \ )
Social Data

Reasoning

Supporting Components
Components

Social Data
Processing
Components

Messaging
Components

Location
Based
Components

Figure 2: A classification of social components

In this implementation, all collected data from these data
sources are stored in JSON properties. The same JSON
data format is applied to all other data sources to solve user-
specific data aggregation problems. Listing 1 shows the data
format of profiling a friend’s basic information through social
components. The same data format is applied to Facebook
data, Linkedin data, Google+ data, and so on.

In this regard, we also implement a JSON property reader
as a supporting component to parse important information
from users’ social data. The app developer could easily fil-
ter the data properties according to the requirements of the
desired app during the composition period. Three examples
of social apps are shown in the evaluation section.

A large obstacle for component-based social app creation
is social data aggregation and the transformation of these
data for forming apps. Within deployed social components
in the SATIN environment, there are components that ag-
gregate data from different sources and provide a personal-
ized data source. To implement this, a new indexing method
based upon a user’s access in multiple social data sources is
considered. The JSON properties of the index file used to
associate a user’s multiple social identities and social data
sources are shown in Listing 2. The social data visualizer
component could be used to visualize social data. Another
social component, called Social Data Filter, filters users and
aggregates social data based on the filtering parameters. For
instance, this Data Filter Component could be used to create
groups with the user’s social connections based on a user’s

1209

Component library

data

. Y .
Sortby: [ Name ) = Rating

Calegories:

{H} Graphical = Non graphical = Adapter

Bus_scenario Calendar_scenario

Decomposer | Display ~ Event

Pimp-my-app = Processing ~ Speech

Synthesis Tools | Tts

hd

Tangible

DataFilter

DataFilter is used to filter users social
graph. This companent filters users social
graph based on the context key such...

Details Add

gy DataViewer
)
‘ i This is a visualizer component. It takes

text as input. It does not provide any
output, instead it displays any length o...

Details Add

FacebookData

This component fetehes users friends
information from user Facebook Graph
API. It does not take any Input but

Figure 4: Components Library

interests. There are also other social components that are
used to share a user’s social resources with his/her connec-
tions.

{"index": [
{"asguser":"1323732759","data":

{ "username":"t.user","socialIDs":

{ "facebookId":"testuseri2",

"linkedinId":"userl",

"googlePlusId":"testuser"

}’

"socialDataPaths"

{ "facebook":"../jfile/facebook/testuser1i2",
"linkedin":"../jfile/linkedin/useri",
"googleplus":"../jfile/googleplus/testuser"

}

}
313

Listing 2: JSON properties for associating a users multi-
ple social identities

Figure 3 shows the composition of an app in the Satinll
Editor. In the figure, one supporting component is used with
three social components including Facebook Data, JSON
Reader and Data Viewer. Users can drag and drop the com-
ponents from the Component Library. The Component Li-
brary is shown in Figure 4. In this library, a user may find
the components required for composing an app. For com-
position, the editor provides a canvas. A user needs to drag



JSONToString

Figure 5:

Type your message herel

Send Email
Facebook Login

Type here contextiey & press Faceb

Contacts based on Type
h tkey & press

Facebook Login button key
Make Group

Figure 6: Composing components in the canvas and
previewing the app

and drop the desired components on the canvas before com-
posing an app. Figure 5 shows some of the components on
the canvas. If components are able to be composed, then
the user would be able to connect those components with
an arrow. Before building the app, the user would be able
to preview the app in the App Previewer. Figure 6 depicts
an app previewer. The previewed app in Figure 6 is used
to collect friends’ contact information from Facebook, fil-
ter social contacts based on a particular context and send
an email message to a group of filtered contacts in order
to arrange a social event. The Facebook Data Component
provides the functionality to fetch data from the Facebook
platform by using the user’s Facebook credentials. Then the
mined data is transformed to JSON properties and stored
in the SATIN server. The Data Filter Component is able
to read the JSON properties and filter the data based on
a user’s given context information. After that, the JSON-
toString Component fetches users’ email addresses from the
group of filtered contacts. The addresses are fetched by the
EmailText Component. This component also contains a text
box in which a user may add a text message and send it to
the group. Thus, the app is used to invite specific friends on
specific occasions to specific events. In a similar way, users
can use other social data components such as Linkedin Data,
Twitter Data or Google+ Data to fetch their social contact
information from those social data sources.

1210

The next section provides an experimental overview and
the results of the user studies for social app development.

S. EVALUATION

We initiated a user study with a small group of users to
get initial feedback on social app development from users,
while not attempting to evaluate the whole Satinll App De-
velopment Environment. For that purpose, we selected users
who have some knowledge about mobile apps, 10 with and
10 without programming experience. To run the study, we
prepared three different scenarios which we gave to the users
for social app development. Before the users started app
composition, the available components for the social apps
were also introduced to the users by providing written de-
scriptions of the components as well as a demonstration on
app composition using the Satinll Editor.

In the following subsection, descriptions of the scenarios
are given.

5.1 Scenarios for the user study

The following three scenarios were provided during the
user study to guide the end-users in developing correspond-
ing apps with the Satinll Editor.

Scenario 1:
Bob is planning an outdoor party at an interesting, new place
he has recently discovered. He wants to invite his Facebook
friends to join the party from their current location. Thus,
Bob shares an app on his Facebook timeline in order to in-
vite his friends to join him, along with a map that directs
them to the outdoor party from their current location.

Scenario 2:
Alice wants to know about the locations that have the great-
est influence on her. So, she would like to make an app that
automatically checks her current location and tracks it if she
stays in that particular place for more than 30 minutes. At
the end of the month, she would like to have stats about the
places she stayed for more than 30 minutes in a ranked man-
ner, meaning the most frequently visited places will appear

first.

Scenario 3:
Charlie is going for a coffee break so he would like to send
a message to his co-workers alerting them in case they want
to take their coffee break at the same time.

5.2 Data Collection

As mentioned earlier, the study has been performed with
two groups of 10 users. The first group of 10 users had
at least some experience with computer programming and
was selected from a population of staff and MSc students at
Lulea University of Technology.The second group of 10 users
had little or no experience with computer programming but
had used apps on smartphones. They were selected from a
population outside of the university.

The following parameters have been considered during the
test for data collection:

e App Composition Time: The time duration that a user
spent composing an app for a given scenario.

o Number of Component: The number of components
that have been selected to perform composition.



Ostermalm)

Innerstaden-Ostermalm

@ Bjorkskataleden, Lulea, Sweden

5.6 km - about 10 mins

1. Head northwest on 1.7 km
Bjorkskataleden toward
Forskarvagen

2. At the roundabout, take the 3rd 1.3 km
exit onto Haparandavagen

3. At the roundabout, take the 3rd 2.0 km
exit onto Bodenvagen

4. Atthe roundabout, take the 2nd 0.4 km
exit onto Smedjegatan

5. Make a U-turn at Stationsgatan 0.1 km

@ Lulea, Sweden

Map data ©2012 Google

e Like

(a) Scenario 1

[ Be the first of your friends to like this.

oK

(b) Scenario 2

—\

B cdn.satin.codemill.se/cor =

My SATIN App

Capture Facebook Friends

Do you like to check this place?

Send Email

(c) Scenario 3

Figure 7: Sample social apps generated by the SatinII users

e App Formation: Whether the user is able to build an
app and able to run the app after the composition.

o App Functionality: Whether the app composed by the
user is functioning correctly with respect to the sce-
nario in question.

Moreover, we collected the users’ individual opinions based
on the following parameters:

e Social Acceptance: Are the social component-based

apps acceptable from a societal perspective?

Positive Affect: Are the social component-based apps
useful in making social interaction easier?

Quality of Experience: Are the social apps user-friendly
compared to available apps on smart mobile devices?

Control: Do the social components provide sufficient
control to compose different apps?

Ownership: Does the ownership of the composed app
remain with the app developer?

The opinion data was collected after the test users per-
formed the above-mentioned task of app composition. The
user provided ratings on a Likert scale from 1 to 5, where
1 is the most negative response and 5 is the most positive
response [20].

Figure 7 shows a snapshot of three apps generated during
the user tests. Figure 7(a) shows an app based on scenario
1. Figure 7(b) shows an app based on scenario 2 and Figure
7(c) is based on scenario 3. The functionalities available in

1211

the Satinll Editor do not fully comply with the described
scenarios. For example, the app for scenario 1 shares an
invitation through a Facebook-like operation, which could
also be done with other options.

5.3 Evaluation Results

Figure 8 depicts the users’ ratings of the social apps cre-
ation using the Satinll Editor. In general, we received pos-
itive responses from the majority of the users. Based on
answers from the first user group who had some program-
ming knowledge, the results show average social acceptance
4.2 (with standard deviation o = 0.7888), average positive
affect 4.7 (o = 0.4830), average quality of experience 4.0
(o = 0.8164), average control 3.6 (o = 1.0749), and owner-
ship 4.1 (¢ = 0.8755).

For the second group of users who do not have program-
ming knowledge, we received slightly different results. The
results show average social acceptance 4.5 (o = 0.5270), av-
erage positive affect 4.5 (o = 0.5270), average quality of ex-
perience 3.6 (¢ = 0.5163), average control 3.2 (o = 1.1352),
and ownership 2.9 (o = 1.1972).

Figure 9 shows the time duration for the composition of
the social apps. Although a significant amount of assistance
was given to the users before or during app composition, the
app composition time duration varies significantly from user
to user. The average time is calculated at 16.6335 minutes
(o0 = 7.6166) required per user to compose apps based on the
given scenarios. However, in comparison between the two
groups of users, it is found that the group with program-



20 I —
19 S—
18 ——— )
17 — )
16
15 ——— ot
14 —
13 —
12 R — W Social acceptance
11 o —— i postive affect
10 [ A— Quality of experience
9 | — i Control
8 | st e “ Ownership
7 — )
6 —
5 (T
4 [ ]
3 | [ ]
, J
1 ‘ _—' |
0 5 10 15 20 25

Figure 8: Individual user ratings of the social components framework, presented using a 5-point Likert scale
based on social acceptance, positive affect, quality of experience, control and ownership. The vertical axis
indicates the users index and the horizontal axis indicates ratings of the users.

ming knowledge takes 10.967 minutes (o = 4.8688) while
the group without programming knowledge group takes 22.3
minutes (o = 5.2357).

A common problem for most of the users during app com-
position is that they were not comfortable enough with the
composition environment and asked for support in identi-
fying appropriate components to implement desired func-
tionalities in their apps. This feedback from the users was
not completely unexpected and will be used to improve the
composition environment. However, this is not directly con-
nected to the social component framework, but for the Sa-
tinll Editor in general. The next version of the editor will
be enhanced with several functionalities to help users iden-
tify components (for instance filtering and recommending
components based on previous use). The positive impres-
sion from this user study is that after being able to create
an app, the users were relaxed and appreciated the envi-
ronment as well as their personalized social apps. The next
section discusses the research question and provides ideas
for future work.

6. DISCUSSION AND FUTURE WORK

This paper proposes a framework for social components
that is tailored to the SatinIl App Development Environ-
ment.

The component development model mainly adheres to the
social aspects of app development. It identifies different core
and supporting components used to compose social apps.

1212

The paper also contains a classification of components, to
give an overview about the kinds of components that could
add value to the mobile app development environment. We
argue that there are a wide variety of components that need
to be developed and classified for diverse app development,
and that is one of the targets for the future work.

From the user study, we found that there are difficulties in
understanding the composition scheme of the SatinIl Editor.
However, with initial support from an instructor, the users
could understand the app composition methodology within
20 to 30 minutes. Our evaluation provided useful feedback
from the users despite the fact that the scale of the user
study was limited to 20 participants.

“How can end-users’ social and communication data be
captured from various data sources and then be utilized by
the end-users to compose social apps”

The research question addressed in this paper considers
social data as one of the important areas of component de-
velopment. Facebook and LinkedIn data components at-
tracted users, since they were interested in developing so-
cial apps based on those two platforms. In this paper, it
is shown that the social component framework provides a
standard way of developing social components to capture
data from social media sources. It also shows the different
types of social data collector components developed for the
SatinII platform. The framework could therefore be used as
a model for other social component developers, who could



A

=N
o o

Jany
[oe]

[y
~

bR
u o

-
S

=R
Nw

W Total apps composition time (in minutes)
per user

Apps composition time (in minutes) for
Scenario 3

=
[
11111111 ___I___1__

Illl'“lll'w‘“”*ﬂ

10
9 W Apps composition time (in minutes) for
Scenario 2
8
7
6
5 i Apps composition time (in minutes) for
Scenario 1
4
3
2
1 ——
0 20 40 60 80 100 120

Figure 9: Social apps composition time on a user basis considering three different composition scenarios.
Vertical axis indicates user’s index and horizontal axis indicates time in minutes.

adapt our JSON properties to enable their components to be
compiled using SatinlI-based social data components. New
component developers can thus benefit from designing and
implementing their social components for the SatinIl App
Development Environment. The potential aspect of future
work is to cover different domains of app developments such
as games, mobile OS-based native apps and so on.

7. CONCLUSIONS

The main contribution is that end-users, without specific
programming skills, can easily create social apps by utilizing
social components and a visual editor. The study shows that
the implementation of an application from any of the three
simple scenarios took on average 17 minutes after a 20 to
30 minute introduction. This clearly indicates the potential
impact of the presented environment, as the study shows
that end-users without practical knowledge in programming
could easily create personalized social apps for media and
other distribution purposes. The results also show that the
two test user groups are distinct from each other, where non-
programmers need double the amount of time to complete
compositions.

A final conclusion is that while smart devices and so-
cial apps are becoming a part of everyday life, the poten-
tial for utilizing personalized social apps for media distribu-
tion, group formation, lightweight collaboration and so on
is great. This will potentially open up for new and more
efficient ways of social interaction.

1213

8. ACKNOWLEDGEMENT

The work was supported by the Centre for Distance Span-
ning Technology (CDT) at Lulead University of Technology
and by the SatinlII research project, funded by the European
Regional Funds (mal-2), the Swedish Agency for Economic
and Regional Growth, the County Administrative Board of
Norrbotten, Norrbotten County Council, and the City of
Lulea. The authors thank the SATIN core-tech group and
the SATIN design group.

9. REFERENCES

[1] Facebook Developer Tools.
https://developers.facebook.com/docs/, 2012.

[2] LinkedIn Developer Tools.
https://developer.linkedin.com/, 2012.

[3] SATIN Editor. http://www.satinproject.eu/, 2012.

[4] Social Distribution Testbed. https://sites.google.
com/site/socialdistributiontestbed/, 2012.

[5] Social Software.
http://en.wikipedia.org/wiki/Social_software,
2012.

[6] Social Web.
http://en.wikipedia.org/wiki/Social_web, 2012.

[7] Twitter Developer Tools. https://dev.twitter.com/,
2012.

[8] M. Bohmer, B. Hecht, J. Schéning, A. Kriiger, and

G. Bauer. Falling asleep with angry birds, facebook



[10]

[11]

[19]

and kindle: a large scale study on mobile application
usage. In Proc. of the 13th International Conference
on Human Computer Interaction with Mobile Devices
and Services, pages 47-56, 2011.

P. D. Bra, A. Aerts, B. Berden, B. de Lange,

B. Rousseau, T. Santic, D. Smits, and N. Stash. Aha!
the adaptive hypermedia architecture. In Proc. of the
fourteenth ACM conference on Hypertext and
Hypermedia, pages 81-84. ACM Press, 2003.

E. Castledine, M. Eftos, and M. Wheeler. Build
Mobile Websites and Apps for Smart Devices.
Sitepoint, 1st edition, 2011.

Y. Cui and M. Honkala. The consumption of
integrated social networking services on mobile
devices. In Proceedings of the 10th International
Conference on Mobile and Ubiquitous Multimedia,
MUM ’11, pages 53-62. ACM, 2011.

F. Daniel, M. Imran, F. Kling, S. Soi, F. Casati, and
M. Marchese. Developing domain-specific mashup
tools for end users. In WWW (Companion Volume),
pages 491-492, 2012.

R. Ennals, E. A. Brewer, M. N. Garofalakis,

M. Shadle, and P. Gandhi. Intel mash maker: join the
web. SIGMOD Record, 36(4):27-33, 2007.

C. Faloutsos and U. Kang. Managing and mining large
graphs: patterns and algorithms. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 585-588.
ACM, 2012.

H. Jung and S. Park. Mashup creation using a mashup
rule language. J. Inf. Sci. Eng., 27(2):761-775, 2011.
W. Kongdenfha, B. Benatallah, J. Vayssiere,

R. Saint-Paul, and F. Casati. Rapid development of
spreadsheet-based web mashups. In WWW, pages
851-860, 2009.

X. Liu, Y. Hui, W. Sun, and H. Liang. Towards
service composition based on mashup. In IEFEFE
Congress on Services, pages 332 —339, july 2007.

X. Liu, N. Jiang, Q. Zhao, and G. Huang. isocialmash:
Convergence of social networks and services
composition on a mashup framework. In Proceedings
of the 2011 IEEE International Conference on
Service-Oriented Computing and Applications, SOCA
’11, pages 1-6, Washington, DC, USA, 2011. IEEE
Computer Society.

M. E. F. Maia, J. B. F. Filho, C. A. B. de Q. Filho,
R. N. S. Castro, R. M. C. Andrade, and F. Toorn.
Framework for building intelligent mobile social
applications. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC 12, pages
525-530, New York, NY, USA, 2012. ACM.

A. Méller, S. Diewald, L. Roalter, and M. Kranz.
MobiMed: Comparing Object Identification
Techniques on Smartphones. In NordiCHI 2012, pages
31-40, Copenhagen, Denmark, Oct. 2012. ACM.

C. Morbidoni, D. Le Phuoc, A. Polleres, M. Samwald,
and G. Tummarello. Previewing semantic web pipes.
In Proceedings of the 5th Furopean semantic web
conference on The semantic web: research and
applications, ESWC’08, pages 843—-848, Berlin,
Heidelberg, 2008. Springer-Verlag.

1214

22]

23]

24]

[25]

[26]

[27]

(28]

J. Rana. Improving group communication by
harnessing information from social networks and
communication services. PhD thesis, avh. Lulea: Lulea
tekniska univ., 2011.

J. Rana, J. Kristiansson, and K. Synnes. Enriching
and simplifying communication by social
prioritization. In Advances in Social Networks
Analysis and Mining (ASONAM), Odense, Denmark,
pages 336-340. IEEE, 2010.

J. Rana, J. Kristiansson, and K. Synnes. Modeling
unified interaction for communication service
integration. In The Fourth International Conference
on Mobile Ubiquitous Computing, Systems, Services
and Technologies, pages 373-378, 2010.

J. Rana, J. Kristiansson, and K. Synnes. Dynamic
media distribution in ad-hoc social networks. In
SCA2012, Xiangtan, China, pages 546-553. IEEE,
2012.

J. Rana, J. Kristiansson, and K. Synnes. Supporting
ubiquitous interaction in dynamic shared spaces
through automatic group formation based on social
context. In ASE International Conference on Social
Informatics, Washington D.C., USA. IEEE, 2012.

J. Wong. Marmite: Towards end-user programming
for the web. In IEEE Symposium on Visual Languages
and Human-Centric Computing, pages 270 —271, 2007.
Yahoo. Pipes. http://pipes.yahoo.com.pipes, 2010.





