
Adaptive Crowdsourcing for Temporal Crowds

L. Elisa Celis
Xerox Research Center India

elisa.celis@xerox.com

Koustuv Dasgupta
Xerox Research Center India
koustuv.dasgupta@xerox.com

Vaibhav Rajan
Xerox Research Center India

vaibhav.rajan@xerox.com

ABSTRACT
Bandit problems embody in essential form a conflict evident
in all human action: information versus immediate payoff.

–P. Whittle (1989)

Crowdsourcing is rapidly emerging as a computing paradigm
that can employ the collective intelligence of a distributed
human population to solve a wide variety of tasks. How-
ever, unlike organizational environments where workers have
set work hours, known skill sets and performance indicators
that can be monitored and controlled, most crowdsourcing
platforms leverage the capabilities of fleeting workers who
exhibit changing work patterns, expertise, and quality of
work. Consequently, platforms exhibit significant variability
in terms of performance characteristics (like response time,
accuracy, and completion rate). While this variability has
been folklore in the crowdsourcing community, we are the
first to show data that displays this kind of changing be-
havior. Notably, these changes are not due to a distribution
with high variance; rather, the distribution itself is changing
over time.
Deciding which platform is most suitable given the re-

quirements of a task is of critical importance in order to
optimize performance; further, making the decision(s) adap-
tively to accommodate the dynamically changing crowd char-
acteristics is a problem that has largely been ignored. In this
paper, we address the changing crowds problem and, specif-
ically, propose a multi-armed bandit based framework. We
introduce the simple ε-smart algorithm that performs ro-
bustly. Counterfactual results based on real-life data from
two popular crowd platforms demonstrate the efficacy of the
proposed approach. Further simulations using a random-
walk model for crowd performance demonstrate its scalabil-
ity and adaptability to more general scenarios.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Crowdsourcing, Multi-armed Bandits, Adaptive Optimiza-
tion, Online Algorithms

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

1. INTRODUCTION
The multi-armed bandit problem models online decision

making under uncertainty where an agent simultaneously at-
tempts to explore, i.e., acquire new knowledge, and exploit,
i.e., optimize decisions based on existing knowledge. Each
arm represents a different option which will result in a ran-
dom reward specified by an unknown reward function. This
problem has a long and rich history [3], and has been used to
design effective algorithms for a large number of real-world
problems[16, 6].

Platforms like Amazon Mechanical Turk, CrowdFlower
and MobileWorks allow requesters to post microtasks for
workers to complete for relatively small amounts of money.
Despite the small size of payments, crowdsourcing markets
attract a diverse pool of workers from around the world, who
participate both to pick up extra cash and beat boredom
[9]. Matching the terminology of a multi-armed bandit, the
requester gets a reward in the form of the quality of work
returned (as measured by whichever metric the requester
chooses). The reward, as above, can be captured by a ran-
dom unknown reward function. Each arm then corresponds
to a potential job posting, which is described by the plat-
form, payment amount, worker restrictions, deadline, and
other relevant parameters.1 Our goal, as in the usual multi-
armed bandit problem, is to choose the arm that maximizes
our reward.

By choosing an arm, we effectively observe a sample from
that arm’s reward function. In the static multi-armed ban-
dit problem, the reward functions are time invariant. Hence,
an algorithm for arm-selection can eventually obtain almost
perfect information and adapt its strategy so that its re-
ward converges to that of an optimal strategy; essentially,
it converges to a state where it need only exploit. However,
due to high turnover and other effects, the crowd workers
change often [10], and with it, as shown in Section 2, the
reward changes as well. Hence, a static multi-armed bandit
model cannot fully capture the behavior in crowdsourcing
markets. Instead, we could consider the non-static situation
where reward functions are chosen by an adversary. How-
ever, this worst-case model would not be representative of
the gradual or stochastic change we expect to observe. In

1Note that while changing some aspects of the job posting
(e.g., payment amount) may be easy to automate, other as-
pects (e.g., which platform) may have significant up front
cost. While this may, in practice, be prohibitively cumber-
some for an individual researcher, with the emergence of
Enterprise Crowdsourcing (e.g., [5]) it is relevant, and hence
we do not incorporate this up-front cost in our calculations.

1093



Section 2, we show data that suggests crowd behavior indeed
varies temporally but not arbitrarily. Hence, a better model
is one where reward functions are dynamic but reasonably
behaved. In this setting, an agent must continuously balance
explore and exploit steps in order to adapt to the dynamic
reward functions, but need not be as defensive as against an
adversary. To this end, we describe a random-walk model in
Section 3 which we then employ in our simulations.
The quality of an algorithm is measured by the expected

regret incurred. There are two common notions of regret;
1) strong regret measures the expected difference between
our performance and that of the optimal (hypothetical) om-
niscient algorithm which always chooses the arm with best
expected reward. 2) weak regret measures the expected dif-
ference between our performance and that of the optimal
(hypothetical) omniscient algorithm that is restricted to us-
ing the same arm at every time step. Strong regret is par-
ticularly relevant for static reward functions since one can
converge to the optimal strategy. However, in the dynamic
(i.e., temporal) case, this is not possible; we must contin-
uously balance explore and exploit steps. In this case, we
simply hope to not lose too much. However, with regard to
weak regret, we have some hope of outperforming the best
single-arm strategy. This is particularly relevant since in a
crowdsourcing setting, where typically a single task descrip-
tion (i.e., platform, payment, etc) is chosen - thus, an algo-
rithm that can adapt to the changing landscape by changing
its choice of task description could provide dramatic bene-
fits.

Our Contributions
We are the first, to our knowledge, to bring to light data
that suggests that temporal variations in crowd performance
indeed occurs. We present our data and methodology in
Section 2. We further propose a multi-armed bandit ap-
proach to explore and exploit these temporal trends. Prior
art in the emerging area of crowdsourcing has not addressed
this problem of adaptation w.r.t crowd platform selection
under dynamic variations - in fact, the focus has been al-
most entirely on optimizing the selection of a single plat-
form. We believe a multi-armed bandit framework would
be useful in general, and present a specific ε-smart algo-
rithm which makes the simple observation that at a given
time step, not every arm is worth exploring. Additionally,
we consider four natural existing comparator algorithms: a
classic ε-greedy algorithm inspired by the static case, a ver-
sion of EXP3 inspired by the adversarial case [17], and our
baselines - a Random algorithm that randomly chooses on
the first time step and sticks with it, and a slightly more
informed Bootstrap algorithm that first samples each arm
and then sticks with the best observation. The latter two al-
gorithms capture current practice where either an arbitrary
choice or one based on some initial experiments is made.
We run counterfactual experiments on our data, presented
in Section 5.1, and discuss the performance of the various
algorithms. Since our data is limited, we additionally in-
troduce a random walk model in Section 3 that captures
temporal variation. We run additional simulations on this
model in order to test the algorithms for robustness in var-
ied environments. Thus far, there has been no study of
how to address temporal variations in crowd performance
and further optimize performance under dynamically vary-
ing conditions. To this end, we believe that this paper sheds

key insights on this problem and some interesting solution
approaches. As we collect data for longer time periods, we
expect the proposed approaches to be increasingly useful in
long-term adaptations to changing crowd behavior.

Related Work
The multi-armed bandit framework found early applications
in the area of clinical trials and adaptive routing efforts for
minimizing delays in a network. In economics, experimental
consumption is a leading example of an allocation problem
where the tradeoff between current payoff and value of in-
formation plays a key role. Multi-armed bandit solutions
have been suggested for matching advertisements to users,
displaying content such as news articles to web viewers, and
scheduling multi-threaded processors(refer to survey [12] for
a thorough introduction into bandit applications and algo-
rithms). In crowdsourcing in particular, multi-armed bandit
algorithms have been used for learning and/or matching the
skills of specific workers (e.g., [8] and [18]). However, these
papers do not address the task of crowd (platform)selection,
and more significantly, assume a static model.

A number of models have been proposed for capturing the
dynamic aspect of the MAB problem. Motivated by task
scheduling, [6] considered the case where only the state of
the active arm (the arm currently being played) can change
in a given step, giving an optimal policy for the Bayesian
formulation with time discounting. This seminal result gave
rise to several rich lines of work, including restless bandits
introduced in [19], where states of all arms can change in
each step according to a known (but arbitrary) stochastic
transition function. While Guha et al. [17] have made
progress on certain special cases, restless bandits are noto-
riously intractable, and computing an (approximately) op-
timal strategy is PSPACE-hard [14]. Most relevantly, Upfal
and Slivkins [17] consider a Brownian motion model for rest-
less bandits and propose several algorithms, giving theoreti-
cal bounds on the strong regret they incur. In particular, we
compare against their best algorithm, a variant of EXP3,
defined in Section 4.

Several forms of outsourcing have become a crucial com-
ponent of business processes [15]. However, selecting which
outsourcing options to use has thus far been an ad-hoc pro-
cess. Often, this is done arbitrarily; at best, benchmarked
data is used to select a reasonable platform and configu-
ration [2]. Clearly, a benchmarked-type solution relies on
the assumption that reward functions are static. Further-
more, even with benchmarking, the stochasticity in the sys-
tem means that over time, the optimal platform will change,
necessitating an adaptive solution. The approach proposed
in this paper is a first-of-its-kind that strives to leverage this
temporal variance in crowd platforms and use the informa-
tion for (platform) selection.

2. CROWDS CHANGE: DATA
In this section we describe our model and results with data

collected from two popular crowd platforms2 that provide ef-
ficient APIs to (i) programmatically inject crowd tasks into
the platforms based on user specifications, and (ii) curate
performance characteristics that affect the decision-making.
Further, the platforms themselves claim differences in the
inherent mix of crowd workers: e.g., workers on Platform 1

2Names omitted for anonymity.

1094



0 10 20 30 40 50 60 70 80 90
Time step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Platform1 Platform2

(a) Accuracy. Which platform is better changes 27 times in 84 time
steps. Platforms have average accuracies of 96.27 and 94.01 percent
respectively.

0 10 20 30 40 50 60 70 80 90
Time step

0

20

40

60

80

100

120

R
e
sp

o
n
se

 T
im

e

Platform1 Platform2

(b) Response Time. Which platform is better changes 26 times in
84 time steps. Platforms have average response times of 18.99 and
10.18 seconds respectively.

Figure 1: Performance statistics of two platforms over one week, plotted at 2hr intervals, resulting in 84 time steps.

are predominantly from US and India, while those on Plat-
form 2 are mainly from developing nations including India,
Philippines, Bangladesh, and Morocco.
We chose to analyze digitization tasks since they are preva-

lent in crowdsourcing and hence workers are familiar with
their format. In particular, we considered an insurance form
of a healthcare provider3 that was hand-filled by volunteers
with ficticious user data. The handwritten forms were pre-
sented in the form of crowd tasks, and workers were asked
to digitize three fields: “patient’s legal name”, “identification
number”, and “briefly describe injury”. Each task paid one
cent (USD) for the extraction of all three fields. A corpus of
more than 1000 forms were used. For each of the forms pro-
cessed by the crowd, we consider the following performance
characteristics:
Accuracy accuracy of the response received (based on gold

data, i.e., the ground truth which was available to us).

Response Time: measured from time of posting the task
to the time when results are received.

Batches of 50 tasks were posted every hour of the day to
each platform. The data was collected over a period of one
week resulting in a total of approximately 10,000 tasks on
each platform. Performance characteristics are plotted in
Figure 1. Note that Platform 1 performs better with respect
to accuracy, while Platform 2 performs better with respect
to response time.

3. CROWDS CHANGE: A MODEL
While we will test our algorithms on the above data, the

data set is admittedly limited. Not only is the time frame
small, but we only observe two platforms on two different
metrics. While we hope to build a general data-based model,
our intent here it to begin with a simple model that captures
temporal change which we can use in a first attempt to verify
the behavior of various algorithms.3 Gradual and stochas-
tic change is traditionally modeled using random walks or
Brownian motion, and hence here we use a random walk
model.
Consider a family of probability distributions A = {F(µ)}

parameterized by their mean µ (and potentially other pa-
rameters). An arm in the random walk model on A will be

3Note specifically that we will not try to fit our parameters
to the above data.

defined by a sequence of means µ0, µ1, . . ., where the arm’s
reward at time t is drawn from F(µt). The µts will form a
lazy random walk with reflecting boundaries. To define this
precisely, let M = [µmin, µmax] ∈ R be the range of the walk.
Let G be an arbitrary distribution on M , let p ∈ [0, 1], and
consider ∆ ∈ R. Then, µ0 ∼ G, and for each t, with prob-
ability 1− p, µt+1 = µt. With the remaining probability p,
let x = µt ± ∆ where the sign is positive or negative with
equal probability. If x ∈ M , then µt+1 = x. Otherwise, if
x > µmax, we let µt+1 = 2µmax − x and if x < µmin we let
µt+1 = 2µmin − x. Hence, this is a lazy random walk with
step size ∆ and reflecting boundaries defined by M .

Note that the means, unless M = R, do not form a mar-
tingale due to the reflecting boundaries. However, they do
form a simple (potentially infinite) Markov chain. Contrary
to what was stated in the discussion of a similar model
in [Slivkins & Upfal 2008], the stationary distribution may
not be uniform on M , again, due to the boundary condition.
However a stationary distribution exists since the Markov
chain is strongly connected and aperiodic. Additionally, due
to the symmetry, it is easy to show that the stationary dis-
tribution will have expectation µmax−µmin/2. Note that when
we select an arm at time t, we do not observe µt itself; rather,
we observe a sample from F(µt).

4. CHANGE CROWDS: ALGORITHMS
The multi-armed bandit problem, originally described by

Robbins (1952), is a statistical decision model of an agent
trying to optimize his decisions while simultaneously im-
proving his information. The inspiration for this problem
comes from a gambler, who must decide which of the k dif-
ferent slot machines to play in a sequence of trials so as to
maximize his reward. This classical problem has received
much attention because of the simple model it provides of
the trade-off between exploration (trying out each arm to
find the best one) and exploitation (playing the arm believed
to give the best payoff). Each choice of an arm results in
an immediate random payoff, but the process determining
these payoffs can change during the play of the bandit. The
distinguishing feature of bandit problems is that the rewards
from one arm do not depend on the rewards obtained from
other arms. In our scenario, each arm is a potential task
description, and the reward is a function of cost, accuracy,
and response time or other relevant measurable parameters.

1095



Any multi-armed bandit algorithm, on a high level, pro-
ceeds as follows:

1. Let w be some distribution over arms.

2. Choose an arm according to w and send tasks to a.

3. Receive a reward given by the selected arm.4

4. Compute a new distribution w that puts more weight
on the arm if it had high reward and less on an arm if
it had low reward.

5. Repeat steps 2-4.
From a practical point of view, this type of algorithm learns
the benefit of the various services over time, and, more
importantly, implicitly adapts its decisions if the services
change without input from a human counterpart.

4.1 Regret
We now formally define regret; the standard measure for

how well a bandit algorithm will perform against hypothet-
ical omniscient algorithms. Consider a family of probability
distributions A = {F(µ)} parameterized by their mean µ.
Let {µi}∞t=1 be an infinite sequence where µi

t corresponds
to the mean of arm i at time t and let F i

t = F(µi
t) be the

corresponding probability distributions. More precisely, if
we choose arm i at time t, then we get a reward rt ∼ F i

t .
Recall, however, that these reward functions and µs are not
known to us a priori. However, for comparison, we will con-
sider a very strong algorithm that is omniscient and, hence,
can base its decisions on the µs.
Let µ∗

t = maxi{µi
t} and i∗t = argmax{µi

t}. Then, the opti-
mal omncient algorithm is the one that plays arm i∗t at time
t. Note that its expected reward at time t is exactly µ∗

t . We
now measure the average strong regret (henceforth strong re-
gret), i.e., the expected difference between our algorithm’s
average reward and the omniscient algorithm’s reward. Af-
ter T time steps, if our algorithm A chooses arm iAt in the
tth time step, strong regret is given by∑T

t=1 EA

[
µ
iAt
t

]
− µ∗

t

T
.

Note that we have no hope of comparing favorably against
such an algorithm. We can at best demonstrate that we do
not behave too poorly. However, considering such regret is
relevant as it gives the worst-case performance.
We also consider average weak regret (henceforth weak

regret), which restricts the omniscient algorithm to select
a single arm and stick with it. This metric is popular in
the study of adversarial bandits where there is no hope of
comparing against an all-powerful algorithm and adversary.
However, it is also particularly relevant for us since current
practice precisely involves choosing a single option. Since
the algorithm is omniscient, it can choose the arm with best
expected overall mean, and hence is a strong comparator.
More precisely, for T time steps, let µ+ = maxi{

∑T
t=1 µi

t/T}
and i+ = argmaxi{

∑T
t=1 µ

i
t}. Then, weak regret is given by∑T

t=1 EA[µ
iAt
t ]

T
− µ+.

We will compare our algorithms using both of these bench-
marks.

4This can be a function of various parameters such as cost,
response time, and accuracy.

4.2 Multi-Armed Bandit Algorithms
In general, we propose a multi-armed bandit framework

for attacking the problem of temporal variability in crowd
performance. In order to test this hypothesis, we consider
five different multi-armed bandit algorithms. The first two
we present, Random and Bootstrap, correspond to stan-
dard practice in the crowdsourcing community; e.g., either
selecting a crowd and parameters at random, or with some
limited (and, as time progresses, irrelevant) set of statistics.
We then consider variants two state of the art algorithms,
ε-greedy and EXP3m, designed originally for static and ad-
versarial bandits respectively. Finally, we present a new al-
gorithm, ε-smart, which leverages the gradual nature of the
temporal change in order to ensure it only explores arms
that have some probability of providing a higher reward.

Random
To compare against the most näıve case, we consider an
agent that simply, at the beginning of time, randomly se-
lects an arm from a probability distribution D over arms5

and sticks with it. In this case, the expected reward is ini-
tially the expectation of D, and converges to (µmax+µmin)/2
as argued in Section 4. Note that any D will converge to
this expected reward, including the one that has probability
1 of selecting a specific arm. Hence, for any k and random
walk model parameters, the average weak regret of this algo-
rithm will converge to 0. Note that average strong regret at
time t is (µmax+µmin)/2 − ED[maxi∈[k]{µk

t }]. Specifically, as

k → ∞, we will get maxi∈[k]{µk
t } → µmax for all t. Hence,

the average strong regret will converge to (µmin−µmax)/2 as
k → ∞.

Bootstrap
A slightly less näıve algorithm is a bootstrapped version
where each arm is first tested out b times in some (potentially
random) order. The agent then selects the best performing
arm and sticks with it. This corresponds to the common
practice of collecting data from various platforms in order
to make an informed decision at the beginning, but conduct-
ing no further experimentation. Note that as t → ∞, both
Random and Bootstrap behave identically since, as above,
the random walks will both mix and have expected reward
(µmax+µmin)/2. Hence, bootstrapping can at best give an ini-
tial boost to our regret. This could, however, be relevant,
especially for short time spans (as in our data), and hence
we keep both algorithms as comparators.

ε-greedy
Consider the static situation, which corresponds to the fully-
lazy (p = 0) version of our model. In this case, there is a
classic algorithm, ε − decreasing, that will converge to the
optimal arm. This algorithm takes a simple approach, at
time t, it chooses the arm with best sample mean with prob-
ability 1−εt, and chooses an arm uniformly at random with
probability εt. Since the arms are static, the sample mean
will converge to the actual mean. Hence, we can decrease
the probability of exploration since, as the number of sam-
ples grows, we become increasingly certain of our estimates.
For static arms, the algorithm is optimized when εt ∼ 1/

√
t,

5Such a distribution could potentially be biased based on
platform popularity, budget, etc.

1096



and gives tight polylogarithmic strong regret [Cesa-Bianchi
& Fischer 1998].
Unfortunately, for p > 0, we no longer have the luxury of

either taking the sample mean (old samples are no longer
relevant) or of decreasing ε to zero (the distributions will
keep changing). Hence, we consider a windowed ε-greedy
algorithm that keeps a constant ε and uses a sample mean
based only on the last ℓ observations. Now, with probability
1 − ε the arm with the best windowed sample mean is cho-
sen, and an arm is chosen uniformly at random otherwise.
Pseudocode is given in Figure 2 for ℓ = 1, which is the case
we consider in our simulation results.

ε-greedy Algorithm
input k ∈ Z+, ε ∈ [0, 1]
for t = 1, 2, . . .

µ∗ = maxi{µ̂i}, i∗ = argmaxi{µ̂i}

it =

{
i∗ with probability 1− ε
i ̸= i∗ with probability ε/k−1.

r ∼ F it
t , µ̂it = r

Figure 2: Pseudocode for ε-greedy for a k-armed bandit.

The parameter ε determines how much we explore. Note

that ℓ = 1, i.e., we simply take the last observation for

arm i as our estimate of its mean. A more sophisticated

estimate, potentially incorporating more samples, could

be used in its place.

EXP3m
In the worst-case model, an adversary who knows our algo-
rithm gets to decide the reward for each arm at each time
step right before we make our selection. While such malice is
not observed in practice, this type of analysis is relevant be-
cause it gives us a benchmark; if our algorithm performs well
in this hopeless-sounding situation, then no matter what the
real situation is, our algorithm is not too bad. The adversary
can punish us arbitrarily badly, incurring arbitrarily bad
strong regret. However, there exists a multiplicative-weight
algorithm that guarantees approximately

√
log k/T weak re-

gret when there are k arms after T time steps [Auer et. al.
2002, McMahan & Streeter 2009]. Note that for this algo-
rithm, T is fixed in advance, which allows us to optimize
parameters. A very relevant paper [Slivkins & Upfal 2008]
considers Brownian motion bandits, a related concept to our
random walk version, and provides a variant of EXP3 where
the algorithm is re-started every m time steps for a carefully
chosen m. The update parameter η can now be optimized
by setting T = m. Interestingly, Slivkins & Upfal are then
able to prove a bound on the average strong regret on their
model. We use precisely this algorithm in our experiments,
and the pseudocode is given in Figure 3.

ε-smart
We now present our algorithm, a variant of ε-greedy, that
relies on a very simple observation: Not every arm is worth
exploring.6 Again we have parameters ε and ℓ as before.

6Note that [Slivkins & Upfal 2008] consider a similar Brow-
nian motion model for bandits where one can also make this
natural observation. However, they provide a different al-
gorithm and give a theoretical analysis for the special case
where one can observe µt directly.

EXP3m Algorithm
input k ∈ Z+, η ∈ [0, 1], m ∈ Z+.
t = 1
while true

wt = (1/k, 1/k, . . . , 1/k)
for s ∈ [m]

it ∼ wt, r ∼ F it
t

r̂ =

{
r/wt,i if i = it
0 otherwise.

for i ∈ [k]

wt+1,i =
wt,i exp(−η(µmax−r̂))∑k

i=1 wt,i exp(−η(µmax−r̂))

t = t+ 1

Figure 3: Pseudocode for EXP3m for a k-armed bandit.

Note that the algorithm restarts every m time steps, and

the parameter η determines how much we weight each

observation. The full vector of rewards r is unknown,

only the reward r that corresponds to it is observed.

Hence, for our update step, we use r̂, which is an unbi-

ased estimator for r.

However, we note that since each arm is a random walk, we
can often determine, with high probability, that an arm will
not outperform our current best choice.

Let µ̂i
t be the ℓ-windowed sample mean for arm i at time

t, i.e., the mean of the last ℓ times it has been chosen. Let
µ∗
t = max{µ̂} be our current estimate of the best arm a∗

t =
argmax{µ̂}. Let τi be the last time arm i was pulled, and
hence µi

τi (or µ
i
τ with some abuse of notation) is our estimate

of the mean reward at this time step. Now, since we are
assuming µi is performing a (lazy) random walk, we know
that in t time steps, with high probability, its mean will
change by at most γ

√
t, where γ can be carefully chosen to

provide the desired probability guarantee. Hence, we know
that if

µ∗
t − µi

τ > γ
√
t− τi,

then with high probability, arm i will not outperform our cur-
rent choice, and we say it is inactive. Hence, our algorithm
can leverage this, and only choose to explore active arms.
More precisely, at time t, with probability ε, we choose an
active arm at at random if one exists. Otherwise, we choose
a∗
t . Pseudocode is given in Figure 4 for ℓ = 1, which is the

case we consider in our simulation results.

5. EXPERIMENTAL RESULTS
We now compare the above algorithms, first with a coun-

terfactual experiment using our data and then on the ran-
dom walk model.

5.1 Counterfactual Experiment
We begin by considering the accuracy and response time

measured on two platforms in 2-hour intervals during a one
week period as described in Section 2. We consider the five
algorithms described in Section 4, and run the algorithms
using the following parameters.
Random: Uniform distribution over platforms.

Bootstrap: b = 1, uniform order over platforms.

ε-greedy: ε = .03, ℓ = 1.

1097



ε-smart Algorithm
input: k ∈ Z+, ε ∈ [0, 1], γ ∈ R+.
τ = 0, µ̂0 = 0
for i ∈ [k]:

r ∼ F i
i , τi = i.

µ̂j
i =

{
r if j = i
µ̂j
τj otherwise.

for t = k, k + 1, . . .
µ∗ = maxi{µ̂i}, i∗ = argmaxi{µ̂i}
for i ∈ [k]:

let ai =

{
1 if µ∗ − µi

τi ≤ γ
√
t− τi,

0 otherwise.

it =

 i∗ with probability 1− ε
i s.t. ai = 1 with probability ε/∑i ai.
i s.t. ai = 0 with probability 0.

Figure 4: Pseudocode for ε-smart for a k-armed bandit.

The parameter ε determines how much we explore, how-

ever, since we only consider active arms, any exploration

is targeted instead of random. The activation parameter γ

can be tuned. Note that i∗ will always be active so the

algorithm is well-defined.

EXP3m: η = 1/7 for accuracy, η = 1/250 for response time.
m = 10.

ε-smart: ε = .1, γ = 0.01, ℓ = 1.
Note that these parameters have not been tuned or opti-
mized for the data since we would not expect to know in
practice, a priori, which parameters to optimize for. Of
course, these could be learned over time, but given the lim-
ited scope of our data set we chose to consider the most
restrictive scenario.7 The one exception is EXP3m where
we set η and m optimally as described in [Auer et. al. 2002,
Slivkins & Upfal 2008] using a rough estimate of µmax and
σ2. We give EXP3m this advantage since we expected it to
be the strongest competitor to our ε-smart algorithm and
do not wish to create any bias in our favor. As we see be-
low, even with this tuning, EXP3m does not perform well
counterfactually. For the remaining algorithms, we simply
plug in the parameters that were determined using the sim-
ulations in Section 5.2. Since the model we use there was
not fit to the data this does not violate the conditions of our
counterfactual experiment.

Accuracy
When measuring accuracy, which platform is better changes
27 times in the 84 time steps (see Table 1). The average
maximum accuracy (in percentage) is 0.978 with standard
deviation 0.034 while the average accuracy for Platform 1 is
0.963 with standard deviation 0.051 and the average accu-
racy for Platform 2 is 0.940 with standard deviation 0.095.
Hence, both platforms are comparable, although Platform 1
has slightly better average performance. The counterfactual
results are presented in Table 1 – note that in this case we
want to maximize accuracy.
For accuracy, the Bootstrap and Random algorithms have

essentially identical performance since, for this data set, the
order in which we test out the platforms in the first two

7In general, one can (and would improve performance) by
learning and tuning the parameters over time, but this is
outside the scope of this current work.

strong σstrong weak 1 weak 2
ε-smart -0.0144 0.0018 -0.0008 0.0235
ε-greedy -0.0174 0.0058 -0.0022 0.0204
Bootstrap -0.03 0.012 -0.0148 0.0078
Random -0.0303 0.0131 -0.0151 0.0075
EXP3m -0.0316 0.0023 -0.0159 0.0071

Table 1: Accuracy. Average strong and weak regret

against Platforms 1 and 2. We run the counterfactual

experiment 300 times for each of the 5 algorithms we con-

sider. The results are sorted from best to worst regret.

The units of regret are in the percentage of accuracy.

time steps determines which one we choose; hence reduc-
ing Bootstrap to Random. Interestingly, these algorithms
outperform EXP3m, which, while it has provable strong
regret guarantees, does not excel in this setting. The best
performer is ε-smart, which only explores when necessary.

Response Time
When measuring response time, which platform is better
changes 26 times in the 84 time steps (see Table 2). The
average minimum response time (in seconds) is 6.79 with
standard deviation 3.69, while the average response time
for Platform 1 is 18.99 with standard deviation 16.03 and
the average accuracy for Platform 2 is 10.18 with standard
deviation 13.43. The counterfactual results are presented in
Table 1 – note that in this case we want to minimize the
response time.

strong σstrong weak 1 weak 2
Random 3.385 4.12 -8.815 0
Bootstrap 3.735 0 -8.465 0.350
ε-smart 4.367 1.285 -7.832 0.983
ε-greedy 7.309 2.293 -4.891 3.924
EXP3 7.682 0.432 -4.993 4.178

Table 2: Response Time. Average strong and weak re-

gret against Platforms 1 and 2. We run the counterfac-

tual experiment 300 times for each of the 5 algorithms

we consider. The results are sorted from best to worst

regret. The units of regret are in seconds.

For response time, unlike accuracy, the ε-smart algorithm
no longer outperforms the rest. In fact, the Bootstrap al-
gorithm performs remarkably well. While this may at first
sound surprising, the fact that Platform 2 significantly out-
performs Platform 1 means that, in this case, choosing and
sticking to Platform 2 is (in retrospect) a good strategy.
Additionally, since the bootstrapping occurred in the first
two time steps where Platform 2, conveniently, also outper-
formed Platform 1, the Bootstrap algorithm always chooses
Platform 2. Hence its exceptional performance. Note that
the variance of our performance is significant since the data
itself is also quite noisy, and in fact directly contributes to
the decline in the performance of ε-smart. Since we are using
a window of size 1, the high variability means that we could
be quite wrong about a platform’s performance. Hence, we
will mistakenly think it is not worth exploring for many time
steps.

1098



0 5 10 15 20 25 30 35
Number of arms

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

A
v
e
ra

g
e
 s

tr
o
n
g
 r

e
g
re

t

eps-smart eps-greedy EXP3 random bootstrap

(a) Strong Regret.

0 5 10 15 20 25 30 35
Number of arms

0.15

0.10

0.05

0.00

0.05

0.10

0.15

A
v
e
ra

g
e
 w

e
a
k 

re
g
re

t

eps-smart eps-greedy EXP3 random bootstrap

(b) Weak Regret.

Figure 5: Strong and weak regret vs the number of arms in the random walk model X t
i = Gaussian(µt

i, .05) where µt
i

is the bounded lazy random walk on [.5, 1]. We vary the number of arms from 1 to 30 with 300 trials. As expected,

performance deteriorates with the number of arms, particularly for strong regret (where the optimal omniscient

algorithm approaches accuracy 1 as the number of arms increases). In both cases, ε-smart algorithm outperforms the

other algorithms, and is the only one that attains positive weak regret.

0 10 20 30 40 50 60 70 80 90
Time step

Platform1

Platform2

eps-greedy
EXP3
eps-smart
bootstrap
OPT

Figure 6: Depicts the switching behavior of various al-

gorithms on the return-time data set. The optimum al-

gorithm (OPT) knows the best platform a priori and

always chooses that platform.

Switching platforms.
Figure 6 gives a simple example of how, on a given run,

each of the algorithms switch from one platform to another
over time8. For conciseness, we only show the graph for ac-
curacy values. The figures also show the hypothetical “opti-
mum” algorithm as defined for strong regret.

5.2 Random-Walk Model Simulation
We now consider the lazy random walk model described

in Section 3, and consider two different experiments, one
varying the number of arms and the other varying σ. The
number of arms is very relevant as not only are there many
crowdsourcing platforms available, but each platform, de-
pending on the task description (which specifies the payment
amount, time of day, worker specifications, etc), can be used
in many different ways. Hence, it is crucial that whichever
algorithm we use be scalable against the number of arms so
we are able to optimize over a wide class of task descriptions.

8The Random algorithm is not shown as it is trivial; namely,
choose a platform at random and stick to it

Additionally, since we do not know much about platform be-
havior, it is important that whichever algorithm we choose
to perform well even in the presence of noise.

Note that since our data is limited, we will not attempt
to fit the random walk model to the data. Instead, we con-
sider a simple special case and use it to gain insight into the
effectiveness of bandit algorithms. Specifically, we consider
the family A of Gaussian distributions where M = [.5, 1].
Our initial points µ0

i are chosen uniformly at random from
the set {.5, .55, . . . , 1}, and the arms evolve with parameters
p = .5 and ∆ = .05. We show the average strong regret
and the minimum average weak regret after running each
algorithm for 1000 time steps, averaged over 300 runs in
Figures 5 and ??. In this case, we first tune the parameters
for σ = .05 and k = 4 using simulations. This gave the
following parameters which were used for our results.
Random: Uniform distribution over platforms.

Bootstrap: b = 1, uniform ordering.

ε-greedy: ε = .03, ℓ = 1.

EXP3m: η = .1, m = 10.

ε-smart: ε = .1, γ = 1, ℓ = 1.

Regret vs. # of Arms
We vary the number of arms (or task descriptions) from 0
to 40. As the number of arms increase, our task becomes in-
creasingly difficult since the performance of the optimal algo-
rithm can only improve; i.e., our comparator for regret mea-
surement only becomes stronger. Using the argument from
Section 4 on the parameters chosen for this random walk
model, we expect average strong regret for both Random
and Bootstrap to converge to −.25, and this is indeed ob-
served. The two perform essentially identically, as would be
expected since t = 1000 gives sufficient time for the walks
to mix. More surprisingly, EXP3m does not outperform
Random and Bootstrap, even given the optimization of its
parameters. On the other hand, ε-greedy performs better
than these other three algorithms, especially for low k where
it even hovers close to 0 weak regret. However, its perfor-
mance becomes indistinguishable from the other three as k
increases. The best performer, and the only one that is con-

1099



sistently better in both strong and weak regret for the full
range of k observed, is ε-smart. Additionally, it is the only
algorithm to attain positive weak regret, and maintains it for
all observed k. This is a strong indicator that, in practice,
the ε-smart algorithm will scale well.

Regret vs. Variance
We vary the parameter σ in the random walk model from 0
(which corresponds to the deterministic random walk model)
to .4 (where we primarily observe noise). As we increase the
variance, our task becomes increasingly difficult since we
cannot learn much from any observation. However, the task
becomes just as difficult for the (hypothetical) optimal algo-
rithms since, even though their expected average at a given
time step may be higher, the distributions have so much
overlap for high σ that in the observations the distinction
is no longer detectable. In this case, in expectation, both
strong and weak regret converges to 0 for all algorithms.
This is, part of what we observe in our counterfactual ex-
periments for response time; the variance in both platforms
is very high, and we cannot cope effectively. However, for
low variance we again see ε-smart outperforming the other
platforms and attaining positive weak regret. Recall that
this implies ε-smart outperforms the best (hypothetical) al-
gorithm that chooses a single arm, and hence is extremely
relevant in practice. This suggests that, even, or perhaps
especially, for large numbers of arms we can and should
exploit the dynamic nature of the crowd to obtain better
performance.

6. CONCLUSION
We take the first step towards studying temporal varia-

tions in crowdsourcing platforms and propose a multi-armed
bandit approach for platform selection in order to cope with
this changing behavior. We compare a number of existing
and new algorithms; specifically, we introduce ϵ−smart, that
performs well in both real and simulated scenarios. While
the results presented in this paper are based on a relatively
small dataset, it motivates us to further explore the efficacy
of bandit approaches in crowd platform selection, particu-
larly over longer time scales. In fact, we expect our algo-
rithm to be more useful in the long-term, where we expect
to observe even more stochastic drift. Our ongoing efforts
are focused on collecting real-world data, both in terms of
additional platforms as well as longer periods, to verify this
drift experimentally and test and develop bandit algorithms
further for these scenarios.

Acknowledgments
The authors wish to thank Saraschandra Karanam of Xerox
Research Centre India for his insights drawn from platform
data.

References
[1 ] P. Auer, N. Cesa-Bianchi, Y. Freund and R. E. Schapire,

“The non-stochastic multi- armed bandit problem.”, in
SIAM JoC, 32:48-77, 2002.

[2 ] C. Balamurugan, S. Roy and S. Gujar, “Sustainable Em-
ployment in India by Crowdsourcing Enterprise Tasks”,
ACM Dev, 2013.

[3 ] D. A. Berry and B. Fristedt, “Bandit problems: sequen-
tial allocation of experiments”, Chapman and Hall,
1985.

[4 ] N. Cesa-Bianchi and P. Fischer,“Finite-time regret bounds
for the multiarmed bandit problem”, ICML, pages 100-
108, 1998.

[5 ] K. Dasgupta, V. Rajan, S. Karanam, C. Balamurugan
and N. Piratla, “CrowdUtility: Know The Crowd That
Works For You”, CHI, 2013.

[6 ] J. C. Gittins, “Bandit Processes and Dynamic Alloca-
tion Indices”, Journal of the Royal Statistical Society.
Series B, Vol. 41, No. 2, 1979.

[7 ] S. Guha and K. Munagala, “Approximation algorithms
for partial-information based stochastic control with
Markovian rewards”, FOCS, 2007.

[8 ] C. J. Ho and J. W. Vaughan, “Online Task Assignment
in Crowdsourcing Markets”, AAAI, 2012.

[9 ] P. G. Ipeirotis,“Analyzing the Amazon Mechanical Turk
marketplace”, ACM XRDS 17(2):16-21, 2010.

[10 ] S. Karanam and K. Dasgupta. “Do Crowdsourcing
platforms differ in their performance characteristics?”,
XIG White Paper, 2012.

[11 ] V. Kuleshov and D. Precup, “Algorithms for the multi-
armed bandit problem”, JML, 1-48, 2000.

[12 ] A. Mahajan and D. Teneketzis, “Multi-Armed Bandit
Problems”, in Foundations and Applications of Sensor
Managment, Ed. A. Hero, D. Castaron, D. Cochran
and K. Kastella. Chapter 6. 2007.

[13 ] B. McMahan and M. Streeter, “Tighter Bounds for
Multi-Armed Bandits with Expert Advice”, COLT, 2009.

[14 ] C. H. Papadimitriou and J. N. Tsitsiklis, “The com-
plexity of optimal queueing network control”, Struc-
ture in Complexity Theory, pages 318-322, 1994.

[15 ] A. Quinn and B. Bederson, “Human computation: a
survey and taxonomy of a growing field”, CHI, 2011.

[16 ] H. Robbins, “Some Aspects of the Sequential Design
of Experiments” Bulletin of the AMS, vol 58, 1952.

[17 ] A. Slivkins and E. Upfal, “Adapting to a Stochastically
Changing Environment”, COLT, 2008.

[18 ] L. Tran-Thanh, S. Stein, A. Rogers and N. R. Jen-
nings, “Efficient Crowdsourcing of Unknown Experts
using Multi-Armed Bandits”, ECAI, 2012.

[19 ] P. Whittle. “Restless bandits: Activity allocation in a
changing world”, J. of Appl. Prob., 25A:287-298, 1988.

1100




