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ABSTRACT
Random walks is one of the most popular ideas in computer
science. A critical assumption in random walks is that the
probability of the walk being at a given vertex at a time
instance converges to a limit independent of the start state.
While this makes it computationally efficient to solve, it
limits their use to incorporate label information. In this
paper, we exploit the connection between Random Walks
and Electrical Networks to incorporate label information in
classification, ranking, and seed expansion.
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1. INTRODUCTION
Random walks are widely used in web[2], search, cluster-

ing, sentiment-analysis and classification [3], where data can
be naturally represented in the form of graphs. The basic
idea in random-walks is voting. When one vertex links to
another, it casts a vote for the other vertex. The higher
the number of votes that are cast for a vertex, the higher
is the importance of the vertex. Moreover, the importance
of the vertex casting a vote determines how important the
vote itself is. However, the power of random walks is lim-
ited by the fact that they do not directly incorporate labeled
data. If labeled data is readily available, we’d want to in-
clude it. For example, it is easy to obtain a list of words
with positive/negative polarity for sentiment detection, a
set of initial seeds for a seed-expansion task, or a partial
ranking/preferences on a ranking task.

In this paper, we draw upon the well-studied connection
between random walks and electrical networks to include
labeled data in a principled manner for both classification
and ranking tasks. It efficiently utilizes a combination of
a) the weight of a node (based on its agreement with the
labels) and b) the weight of the edge connecting to it to
vote on its neighbors. Our work is related to work on label
propagation and semi-supervised learning by [3]. However,
our approach differs as it models graphs with labels using
the same methodology as random walks. The main contri-
butions of this paper are: we show how to directly exploit
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labeled data in random walks, apply it to various tasks (clas-
sification, ranking and seed expansion), and show significant
improvements over standard random-walk-based techniques.

2. THE ALGORITHM
We will first describe the connection between random walks

and electrical networks [1]. Recall that in the steady state of
random walks, the probability of being at any node y is the
sum over the probability of being at each node x ∈ V \{y}
and taking the transition from x to y. In terms of matrices,
this is the same as power iteration. Now, let us associate
with every graph G(V,E,W ), an electrical network whose
properties will closely resemble those of a random walk on
the original graph. The electrical network is constructed
by introducing a resistor between every pair of nodes in
the graph that share an edge ((x,y)∈ E) with resistance
inversely proportional to the weight of the edge (conduc-
tance Cx,y ∝Wx,y). Let P be the row-normalized adjacency
matrix (or Transition Matrix) of the graph where Pxy, the
(x, y)th entry is the probability of a transition from node x
to y. Now, consider two vertices a and b. Let the voltage
v(b) = 0. Next, attach a battery of 1 volt across a and b so
that the voltage v(a) = 1. Fixing the voltages at these two
nodes, we compute the voltage at other nodes in the net-
work (v = Pv). An important theoretical result of use here
is that the voltage at an arbitrary vertex x is given by the
probability of reaching a from x before reaching b [1]. Hence,
to impose polarity in random walks, we will just define the
boundary conditions (va, vb) in the electrical network and do
a power iteration (v = Pv) to compute v, holding the volt-
ages at labeled nodes fixed. The newly computed voltage at
any arbitrary node will give its label affiliation (probability
that the node is closer to label a than label b).

Our algorithm exploits this relationship between electrical
networks and random walks and extends to multiple classes.
Given data D={(x1, y1), . . . ,(xn, yn)}, where xi ∈ Rd are
d-dimensional feature representations of the data and yi ∈
{0, 1 . . . , C} are class labels known over a subset of nodes
Z ∈ {0, 1}V , we construct a (complete) graph G = (V,E,W )
over the data points, V = {1 . . . n}, E = {V × V } and
W = {wij |wij = Sim(xi, xj)} where Sim is some similarity
metric. Then, we hold voltages at all nodes Z equal to their
class labels, v(i) = yi∀i ∈ Z and solve the network. We
label a node i ∈ {V \Z} as the integer nearest to v(i).

The voltage computation proceeds in a manner similar
to power iteration (see Algorithm 1). In matrix notation,
the power iteration when nodes Z are clamped translates to
v = (Pv) ◦Z + v ◦ (1−Z) where ◦ represents the Hadamard
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Figure 1: (a) Accuracy on IMDB review Classification Task, (b) MAE on Amazon review Ranking Task and
(c) MAE on the 20 newsgroup Seed Expansion Task as percentage of labeled data is varied.

(element-wise) product of matrices and (1 − Z) is a vector
where all elements of Z are switched.

Algorithm 1: Electrical Network Labeler(P, Y, Z)

Initialize: Labels Y for all nodes, using labels for Z and
randomly for V \{Z}, Ynew and 4Y ∈ random([0, C]V );
while (‖ 4 Y ‖2 > 0) do

Ynew = (PY)◦Z + Y◦(1-Z);
4Y = Ynew − Y ;
Y = Ynew;

end

3. EVALUATION
We evaluate our approach on three real-world data sets,

one each on classification, ranking, and seed expansion tasks.
First, we choose the problem of sentiment polarity detec-

tion on an IMDB movie review corpus.1 The dataset con-
tains 1000 positive and 1000 negatively tagged reviews. We
build a complete graph on the reviews (similarity between
reviews is the cosine-similarity of the tf-idf representations
of the reviews after stop word removal). We split the data
randomly into training and test sets (via 5-fold cross valida-
tion) and label the positive and negative instances as +1 and
0 Volt, respectively. For comparison, we employ a variant of
a random-walk based technique which comes closest to ex-
ploiting labeled data, called personalized page rank (PPR)
[2]. PPR, besides transitioning to its neighbors according to
the transition matrix, teleports to a random node accord-
ing to a pre-defined probability distribution over the nodes
called the “preference vector”. We construct two baselines:
by instantiating the preference vector either as a uniform
distribution over the positive instances or over the negative
instances in the training set. In Table 1, we can see signifi-
cant improvements in performance of the electrical network
classifier in terms of accuracy, precision, recall and F1-score
over the two baselines. Figure 1(a) plots the accuracy of the
three classifiers as the proportion of labels in the data is var-
ied. Here, we see that the electrical network has a greater
slope and hence utilizes labeled data better. We claim that
this is due to its ability to exploit labeled disagreement which
random walk approaches like PPR cannot.

Next, we chose a dataset with fine-grained rankings2: prod-
uct reviews taken from Amazon from four product domains.
Each review also has ratings (scale 1 to 5). For each product
domain, we construct a graph over the reviews in a similar
manner as before. The voltages of all the training reviews

1www.cs.cornell.edu/people/pabo/movie-review-data/
2www.cs.jhu.edu/~mdredze/datasets/sentiment/

Table 1: Classification Results on the IMDB dataset
Classifier Acc. Precision Recall F1-Score
Electr. Network 0.788 0.764 0.754 0.759
Pos. Pagerank 0.637 0.631 0.658 0.644
Neg. Pagerank 0.674 0.684 0.693 0.689

are clamped to their ratings. Here, the task is to determine
the rating for a random test review. We claim that this
equals the voltage at the test review node. We use mean
absolute error (MAE) as an evaluation metric and pagerank
as the baseline. PPR is constructed by instantiating the
preference vector using the rankings (ratings) known during
training. Figure 1(b) shows how MAE in one of the domains
(books) decreases faster for the electrical networks than for
PPR as the percentage of labeled data is varied.

Finally, we choose the 20-newsgroups dataset comprising
18,846 documents organized into 20 different newsgroups,
each corresponding to a different topic (vocabulary size =
26k). Here, we manually create a small seed list (25 words)
for each newsgroup. Our task is to expand the seed lists.
This is done by first constructing a complete graph over
all the words in the dataset using the similarity between
words to be the cosine similarity between their correspond-
ing SENNA embeddings3. To expand the seed list for a
particular newsgroup, we assign all seed words to +1 Volt
and all remaining seed words to 0 Volt and create a ranking
over all nodes as before. Since it is impossible to obtain a
ground truth here, we approximate it by ranking the words
for each newsgroup by their tf-idf scores in the group. Figure
1(c) shows an improvement over PPR and a drop in MAE
for the electrical network as labels increase.

4. CONCLUSION
Our experiments establish the efficacy of electrical net-

works as a way to provide supervision in random walks.
When data can be naturally represented in form of graphs
and some labeled data is available, electrical network solving
can be an effective way to do semi-supervised learning.
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