Web Mining

From news websites to tweets and reviews, the multitude of rich information sources available on the Web today provides wonderful opportunities and challenges to Web mining for a diverse range of applications: constructing large knowledge bases, predicting the future, estimating the spread of a disease in a population, evaluating and summarizing opinions and reviews, as well as filtering and cleaning Web content to improve the experience of users consuming it. We welcome submissions of original high-quality research papers related to all aspects of Web Mining, including, but not limited to, the  topics below.

Topics

  • Association analysis
  • Clustering and classification of text, image, videos, Web pages and metadata
  • Change detection and monitoring methods
  • Query log, click trail, and traffic data mining
  • Mining tweets, tags, and multimodal data
  • Mining opinions and related data
  • Detecting Web spam, opinion spam and fake reviews
  • Recommendation systems
  • Data integration and data cleaning
  • Predicting the future using social media and other Web data
  • Efficient algorithms for big data analysis
  • Machine learning and data mining techniques for data analysis
  • Online advertising
  • Distributed and Parallel algorithms using MapReduce
  • Other novel Web mining applications and algorithms

Track chairs

  • Tanya Berger-Wolf (UIC)
  • Bing Liu (UIC)
  • Kyuseok Shim (SNU)


TPC members

  • Alexandros Ntoulas (Zynga)
  • Amr Ahmed (Yahoo! Research)
  • Aristides Gionis (Yahoo! Research Barcelona)
  • Arjun Mukherjee (University of Illinois, Chicago)
  • Bamshad Mobasher (DePaul University)
  • C. Lee Giles (Pennsylvania State University)
  • Charu Aggarwal (IBM)
  • Chin-Wan Chung (KAIST)
  • Christos Faloutsos (Carnegie Mellon University)
  • David Crandall (Indiana University)
  • Dimitrios Gunopulos (UoA)
  • Dongwon Lee (Penn State University)
  • Dou Shen (Microsoft Adcenter Labs)
  • Dunja Mladenic (J.Stefan Institute)
  • Eduard
  • Gao Cong (Nanyang Technological University)
  • Georges Dupret (yahoo! Labs)
  • Hady Lauw (Singapore Management University)
  • Hang Li (Huawei Noah’s Arc Lab)
  • Huan Liu (Arizona State University)
  • Hui Xiong (Rutgers University)
  • Hwanjo Yu (POSTECH)
  • Irwin King (The Chinese University of Hong Kong)
  • Jaewoo Kang (Korea University)
  • Jaideep Srivastava (University of Minnesota)
  • Jeffery Xu Yu (Department of Systems Engineering & Engineering Management, Chinese University of Hong Kong)
  • Jian Pei (Simon Fraser University)
  • Jianyong Wang (Tsinghua University)
  • Jiawei Han (University of Illinois at Urbana-Champaign)
  • Ke Wang (Simon Fraser University)
  • Lei Zhang (University of Ilinois at Chicago)
  • Lei Tang (@WalmartLabs)
  • Mark Sandler (Google)
  • Martin Ester (Department of Computer Science, Simon Fraser University, Canada)
  • Masashi Toyoda (University of Tokyo)
  • Mayank Lahiri (University of Illinois at Chicago)
  • Mayur Datar (Google Inc)
  • Michael Lyu ()
  • Michael Wurst (TU Dortmund)
  • Michael Gamon (Microsoft Research)
  • Michalis Vazirgiannis (Department of Informatics, AUEB)
  • Myra Spiliopoulou (U. Magdeburg)
  • Natalie Glance (Google)
  • Nitin Jindal (Google)
  • Olfa Nasraoui (Univ of Louisville)
  • Philip Yu (UIC)
  • Roberto Bayardo (Google)
  • Ronen Feldman (Hebrew University)
  • Sangkeun Lee (Department of Computer Sciene and Engineering, Korea University)
  • Sang-Wook Kim (Hanyang University)
  • Shawndra Hill (University of Pennsylvania)
  • Smriti Bhagat (Technicolor)
  • Srinivasan Parthasarathy (Department of Computer Science and Engineering, The Ohio State University)
  • Tie-Yan Liu (Microsoft Research Asia)
  • Tina Eliassi-Rad (Rutgers University)
  • U Kang (Carnegie Mellon University)
  • Wai Lam (The Chinese University of Hong Kong)
  • Wook-Shin Han (Kyungpook National University)
  • Xiaoli Li (Institute for Infocomm Research)
  • Yue Lu (University of Illinois at Urbana-Champaign)
  • Yun Chi (NEC Laboratories America)
  • Zaiqing Nie (Microsoft Research Asia)