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ABSTRACT

A crucial step in adding structure to unstructured data is to identify

references to entities and disambiguate them. Such disambiguated

references can help enhance readability and draw similarities across

different pieces of running text in an automated fashion. Previous

research has tackled this problem by first forming a catalog of en-

tities from a knowledge base, such as Wikipedia, and then using

this catalog to disambiguate references in unseen text. However,

most of the previously proposed models either do not use all text in

the knowledge base, potentially missing out on discriminative fea-

tures, or do not exploit word-entity proximity to learn high-quality

catalogs. In this work, we propose topic models that keep track of

the context of every word in the knowledge base; so that words ap-

pearing within the same context as an entity are more likely to be

associated with that entity. Thus, our topic models utilize all text

present in the knowledge base and help learn high-quality catalogs.

Our models also learn groups of co-occurring entities thus enabling

collective disambiguation. Unlike most previous topic models, our

models are non-parametric and do not require the user to specify

the exact number of groups present in the knowledge base. In ex-

periments performed on an extract of Wikipedia containing almost

60,000 references, our models outperform SVM-based baselines by

as much as 18% in terms of disambiguation accuracy translating to

an increment of almost 11,000 correctly disambiguated references.
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H.4.m [Information Systems]: Miscellaneous; G.3 [Mathematics

of Computing]: Probability and Statistics; I.7 [Computing Method-

ologies]: Document and Text Processing
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1. INTRODUCTION
An important step in data cleaning is performing entity resolu-

tion [11] wherein, we take mentions or references of entities strewn

in different data sources and match them against each other. Since

entity resolution allows one to draw connections between different

datasets, essentially allowing us to join them, and thus create larger,

more dependable datasets in an automatic fashion, it has been the

topic of fervent research for almost the past half a century.
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We are interested in a particular variant of entity resolution known

as entity disambiguation [9, 16, 17, 18, 6, 10, 26]. In entity disam-

biguation, we are given a collection of documents containing words

and references. The challenge lies in identifying which reference

belongs to which entity. Prior research has tackled this problem by

dividing it into two steps: 1) learn a catalog of entities containing

quantities that can help in the disambiguation process and, 2) use

the learnt catalog to disambiguate references in unseen documents.

Usually, quantities that help disambiguate references most com-

monly include word-entity associations, i.e., storing with each en-

tity the most common words that appear alongside it, and groups of

entities that appear frequently within the same document. The most

common approach to learning a catalog is from a pre-annotated

knowledge base, usually Wikipedia [9, 16, 17, 18, 6, 26]. To date,

prior work has used the text in Wikipedia pages, links and anchor

text within Wikipedia (intra-wiki links), Wikipedia’s disambigua-

tion and redirect pages, and the Wikipedia category hierarchy for

entity disambiguation.

The words appearing in a given piece of running text form one

of the main sources of evidence that we can utilize to disambiguate

references appearing in it. One approach to leveraging this evi-

dence, is to use the learnt word-entity associations and the words

appearing in text to identify which entities the references are refer-

ring to. One of the challenges in learning word-entity associations

for entity disambiguation lies in the fact that knowledge bases such

as Wikipedia are organized into separate documents and most doc-

uments contain references to more than one entities. For instance,

Figure 1 shows Brad Pitt’s Wikipedia page and here we have cir-

cled all the blue text indicating intra-wiki links to other peoples’

Wikipedia pages. In this case, the anchor text represents references

and the pages to which the links point to denote the entity being

referred to. For example, the first reference is to a different Brad

Pitt, the second to Geena Davis and so on. In such a setting, if one

were interested in associating each word on the page with exactly

one entity amongst all the entities being referred to by the page,

then one needs to go through a non-trivial inference process.

Previous work has circumvented this problem of associating words

to entities by utilizing a window-ing strategy [10, 6, 17, 16]. Given

a user-defined window length, for each reference in a Wikipedia

page, take only the words around the reference within the window

and associate these with the entity being referred to. This strat-

egy has two very significant drawbacks. First, as the reader has

probably also guessed, windowing leads to a significant loss of dis-

criminative features since a unit of discourse can easily exceed the

window length. More importantly, determining the correct window

length seems crucial but not an easy task. If we set the window to

be too large then we risk including noise and a small window will

lead to loss of features. Indeed, in the past, various works have used
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Figure 1: A Wikipedia article with annotated (black ellipses) and un-annotated references (red squares).

widely divergent window length settings, e.g., 6 [17], 10 [10] and

55 [6], besides [16] which does not specify its window length. Note

that, in knowledge bases such as Wikipedia, not all references are

intra-wiki links with their destinations clearly indicating the entity

being referred to. In most Wikipedia pages, there also exist many

references that are not part of anchor text and to make the distinc-

tion clear, we sometimes refer to these as un-annotated references.

Going back to Figure 1, besides the black ellipses highlighting ref-

erences in anchor text, there also exist many other references that

refer to “Brad Pitt” only by his last name “Pitt” and these appear in

plain text which we have highlighted using red rectangles. A win-

dowing scheme, which only concentrates on annotated references,

will ignore such un-annotated references since these usually do not

fall within any windows as opposed to an approach that considers

all text appearing in the knowledge base.

Recently, [26] proposed topic models that attempt to use all text

in the knowledge base instead of just using windows. However,

these models do not exploit proximity to learn word-entity associ-

ations. If we see words w and w′ occurring in a document con-

taining a reference r to entity e then intuitively speaking, we ex-

pect the word that appears closer to r to be a stronger indicator of

e. Note that, the use of windows automatically exploits proximity.

Further, [26] also performs collective disambiguation. Collective

disambiguation can be helpful when entities with similar-sounding

names appear with different sets of entities. For instance, on its

own a “Chris Columbus” reference may be ambiguous but if we

know that “Daniel Radcliffe” also appears alongside it then we can

be more certain that its the film-maker1 who is being referred to

and not the explorer. Unfortunately, for this [26] requires a cat-

egory hierarchy, viz. the Wikipedia category hierarchy which be-

ing crowd-sourced is noisy and entails expensive hierarchy pruning

procedures. Note that, collective disambiguation has also been uti-

lized previously in [16], and also in [18, 9] to a certain extent.

In this paper, we achieve the best of both worlds by proposing

topic models that utilize all text in the knowledge base, thus going

beyond window-based approaches, and exploit proximity to learn

word-entity associations, thus going beyond previously proposed

topic models for entity disambiguation. Our main contribution, the

context-aware topic model takes proximity into account by asso-

ciating a distinct, non-uniform probability distribution with every

1
Chris Columbus directed the first two Harry Potter movies and Daniel Radcliffe is

the name of the child actor who played Harry.

word in the knowledge base. This distribution defines how likely it

is to associate the word with an entity being referred to by the page

to which the word belongs to. The distribution is computed by

taking into account which entities appear within the same context,

e.g., paragraph, as the word and which do not, thus taking into ac-

count word-entity proximity. Our context-aware topic model is ca-

pable of reasoning with multiple levels of contexts simultaneously.

Other examples of contexts include documents and sentences. Be-

sides utilizing words, our context-aware topic model also performs

collective disambiguation [16, 9, 18] by learning groups of co-

occurring entities from the knowledge base. Note that, we learn

groups without the aid of a category hierarchy thus making the pro-

posed models capable of learning from more general knowledge

bases which may not come with a category hierarchy. However,

one complication here is to estimate the number of groups and to

address this we borrow from the literature on non-parametric topic

models [28]. The result is an almost parameter-free model that does

not need to be fed the exact number of groups as an extra parameter.

Note that originally, topic models were proposed for unsuper-

vised learning [4]. The entity disambiguation problem however,

is better posed as a supervised learning problem, i.e., learn from

a knowledge base and test on unseen text. One of the defining

aspects of this work is the use of different topic models for learn-

ing and testing. To be more precise, we use a collection of topic

models to learn various useful parameters from the knowledge base

and it is this collection that we refer to as the context-aware topic

model. In the end, we show that our collection of topic models out-

performs baselines by almost 18% with respect to disambiguation

accuracy on a dataset containing almost 60,000 references spread

over roughly 16,000 entities, which translates to an increment of

almost 11,000 correctly disambiguated references.

The rest of the paper is organized as follows: In the next section,

we begin with some notation and discuss pros and cons of adapt-

ing existing topic models for entity disambiguation. This section

also serves as a primer for topic models. In Section 3 we present

our main contribution, the context-aware topic model, including the

model that learns groups, its non-parametric variant and the model

we use to test with. In Section 4, we describe our dataset on which

we perform experiments and report comparisons with previously

proposed models. We conclude the paper with a description of re-

lated work in Section 5 and pointers to future work in Section 6.
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2. ADAPTING TOPIC MODELS FOR EN-

TITY DISAMBIGUATION
Let D denote a knowledge base and e denote an entity. D con-

sists of a set of documents such that each d ∈ D describes a distinct

entity denoted by ed. Moreover, let E = {ed|d ∈ D} denote the

set of entities described in D. We now introduce the concept of an

annotated word. One of our main goals in this paper is to learn

word-entity associations. Each document d ∈ D consists of two

components, the words in d and out-going links connecting d to

other documents in D. The anchor text associated with links ema-

nating from d is very useful since these words provide examples of

word-entity associations. Let d1
l
→ d2 denote a link l from d1 to

d2 and let w represent a word in l’s anchor text in d1. We denote

the association between w and ed2 by saying w is annotated with

ed2 . Also, we = ed2 denotes the entity w is annotated with. We

use Ad to denote the set of all anchor text words present in d.

Consider for instance, Brad Pitt’s Wikipedia page in Figure 1.

This is one of many pages in the Wikipedia extract which we use to

experiment with later and contains pages describing various people

including sports-persons, actors, musicians and scholars. In Figure

1, we have highlighted most of the intra-wiki links that point from

this page to other pages in Wikipedia in black ellipses. Thus, it

is easy to associate the words “Brad”, “Pitt” and “boxer” with a

different Brad Pitt (who is a boxer) since the first intra-wiki link

points to his page. Besides the anchor text in this page, there is a

lot of other text that is not part of any intra-wiki links. Included

among these, are many references to the primary entity described

in this page (these are highlighted in red rectangles). If one were to

capture these un-annotated references to Brad Pitt, then one would

first need to learn word-entity associations between anchor text and

the entities they point to, and use these associations to annotate the

un-annotated reference words with entities. This is where topic

models and inference come in.

Topic models were originally proposed to capture latent topics in

text corpora [4]. Intuitively, a topic is a collection of words that co-

occur in the same documents. A topic can be represented using a

multinomial distribution over vocabulary V . More precisely, topic

φ is such that φ : V → [0, 1] so that it maps each word in the

vocabulary to a probability and
P

w∈V φ(w) = 1 so that φ forms a

legal distribution. To learn a catalog for entity disambiguation, we

are more interested in capturing word-entity associations and we

can do this using entity-specific topics. In most of the topic models

introduced in this paper, we will use φe to denote the entity-specific

topic for entity e and the words which φe maps to high probabilities

are precisely the words e is associated with.

Gibbs sampling (GS) [12] belongs to an accurate class of approx-

imate inference algorithms known as Markov chain Monte Carlo

(MCMC). Moreover, GS is also the fastest MCMC technique known

and very easy to set up for topic models. The crucial step in GS is

the sampling step, which defines how to sample for a word’s anno-

tation given the annotations for the rest of the corpus. The structure

of GS consists of outer loops wherein we go over the whole corpus

sampling for every word’s annotation. Having performed an ade-

quate number of these (burn-in), GS converges. A joint sample is a

snapshot where every word has been annotated using which we can

compute entity-specific topics φe, ∀e ∈ E. We refer to this as the

φ computation step. After burn-in, we collect a sufficient number

of joint samples and average the value of φe across these.

2.1 LDA and its Shortcomings
Numerous topic models have been proposed to date and some of

these can be adapted for entity disambiguation. In what follows,

(i) α θd e w φ β

(ii) Ed e w φ β

(iii) α θd e w φ

Figure 2: Plate models for (i) LDA (ii) Contiguous-Entity model

and (iii) the testing model.

we adapt one of the earliest topic models, viz. latent Dirichlet allo-

cation (LDA) [4], to learn entity-specific topics. Subsequently, to

illustrate the shortcomings of LDA we present a better performing

topic model and improve on this model in the next section.

Perhaps the easiest way to understand LDA is via its generative

semantics. Figure 2 (i) shows LDA’s plate model representation

[7] from which it is easy to read off the generative semantics. In

a plate model, unshaded and shaded nodes represent unobserved

and observed random variables, respectively, while boxes represent

repetitions. Let Ed = {ed} ∪ {we|w ∈ Ad}, represent the set

of relevant entities either described in or linked to from document

d. In Figure 2 (i), θd represents a multinomial distribution over

Ed sampled from a Dirichlet distribution (Dir) whose parameters

are given by α. More specifically, θd : Ed → [0, 1] and ∀e ∈
Ed, θd(e) is the probability of a random word in d to be associated

with e ∈ Ed
2. The box enclosing θd represents a loop over all d ∈

D. The next box represents a loop over words w ∈ d. Essentially,

to generate a word w we need to first choose an annotation e with

probability θd(e) multiplied by the probability for generating w
from e’s entity-specific topic φe(w). Note that, since the words in

the knowledge base’s documents comprise our observations, w is

a shaded node in Figure 2 (i). The last box indicates that for each

e ∈ E there is a distinct φe and Dir(β) is their common prior.

Having discussed LDA’s generative semantics, we now need to

learn φe and for this we need an inference procedure. To derive

Gibbs sampling (GS) for any topic model, one usually needs to go

through a tedious (but straightforward) derivation which has been

well illustrated in prior works [15, 13]. For the sake of brevity,

we refrain from delving into such details in this paper. Algorithm

1 describes GS for LDA by specifying its sampling and φ com-

putation steps, respectively. In Algorithm 1, ∼ denotes “sample”.

Thus, the sampling step defines how to sample an annotating en-

tity e for w and the probability of choosing e is defined in terms

of counts. Whenever a count variable has a superscript “−”, that

means we discount the current word from the count. Thus, when

sampling for w’s annotation, n−e =
P

d∈D

P

w′ 6=w,w′∈d δ(w′e =

e) whereas ne =
P

d∈D

P

w′∈d δ(w′e = e) where δ(pred) is 1 iff

pred holds else is 0. Similarly, n−d,e =
P

w′∈d,w′ 6=w δ(w′e = e)

and nw,e =
P

d∈D

P

w′∈d δ(w′e = e)δ(term(w′) = term(w))
where term(w) returns the term from the vocabulary that w is an

instance of. For example, if w is an instance of the word “graph”

then nw,e would count the number of instances of “graph” in the

whole knowledge base that were annotated with entity e. Note that,

we never sample for anchor words, their annotations are “clamped”

to the link’s destination entity. Also, GS is bootstrapped by assign-

2
Note that, ∀e /∈ Ed : θd(e) = 0 and this follows from Wikipedia’s manual of

style [1] that mandates any entity ever referred to in d should either be ed or be the

destination of some intra-wiki link emanating from d.
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Algorithm 1: Gibbs Sampling for LDA

Sampling step:

we ∼ (α + n−d,e)
β+n−

w,e

|V |β+n−

e

, ∀d ∈ D, ∀w ∈ d, w /∈ Ad

φ computation:

φe(w) ∝ β + nw,e,
P

w∈V φe(w) = 1, ∀e ∈ E

Algorithm 2: Gibbs sampling for CE

Sampling step:

we ∼ (δ(e = w←e ) + 1
|Ed|

)
β+n−

w,e

|V |β+n−

e

, ∀d ∈ D, ∀w ∈ d, w /∈ Ad

φ computation:

φe(w) ∝ β + nw,e,
P

w∈V φe(w) = 1, ∀e ∈ E

Algorithm 3: Gibbs Sampling for testing

Sampling step:

we ∼ (n−d,e + α)φe(w), ∀d ∈ Dtest, ∀w ∈ d 0 10 20 30 40 50 60 70 80
Accuracy

48.5%

61.2%CE

LDA

Figure 3: Gibbs sampling algorithms and results of the preliminary experiment.

ing all non-anchor w ∈ d to entities in Ed uniformly at random. A

number of techniques are available to set hyperparameters α and β,

and for all the models in this paper we use Minka’s updates [19].

One of the shortcomings of LDA is that it does not take into

account proximity of links and words. For instance in Figure 1

intuitively speaking, one would expect it to be much more likely

that the word “lives” is associated with the entity “Angelina Jolie”

as opposed to the entity “Anthony Hopkins”, since he appears in

a different paragraph. LDA considers the document to be a bag of

words and uses the same probabilities for annotating words no mat-

ter where the word lies with respect to links. To rectify this, we in-

troduce the contiguous entity model (CE) in Figure 2 (ii) that takes

proximity into account. CE assumes a document is a sequence and

flips an unbiased coin to annotated a word. If the coin falls heads

then we sample an annotating entity uniformly at random from Ed,

but if the coin falls tails then we choose the annotation of the pre-

vious word that appears in d. In terms of probabilities, Pr(we) =
1
2

1
|Ed|

δ(we = e) + 1
2
δ(we = w←e ), ∀e ∈ Ed, where w←e is

the annotation of the previous word. ∵ w←e ∈ Ed, Pr(we) =
|Ed|+1
2|Ed|

δ(we = w←e ) + 1
2|Ed|

δ(we = e), ∀e ∈ Ed \ {w
←
e }. The

conditioning on the previous word’s annotation is depicted by a

self-loop on e in Figure 2 (ii). GS for CE is shown in Algorithm

2, where the sampling step is |Ed|+ 1 times more likely to choose

the previous word’s annotation a priori. Note that, the notion of a

previous word does not hold for the first word in document d, and

we annotate this with ed since the first word in a Wikipedia page is

usually the first name of the entity being described.

We now proceed towards comparing the two models introduced

so far and for this we will require a topic model (shown in Figure

2 (iii)) that can use the learnt entity-specific topics to disambiguate

references in unseen data. As the reader may have already noticed,

it resembles LDA in every way except that φ is shaded since in this

case these have already been learnt. Further, Algorithm 3 depicts

GS for testing and here we only describe the sampling step. Note

that, α in Algorithm 3 is a smoothing term, one can replace it with

any small number while testing or with the final learnt value of

hyperparameter α learnt by running LDA (Figure 2 (i)).

2.2 Comparison
We assume that the held-out test corpus Dtest consists of docu-

ments containing running text (and no links). We also assume that,

the references to entities in the test documents have been located

by using a named-entity recognition tool. For each reference, our

task is to identify the correct entity from the knowledge base and

for this purpose, we utilize the learnt entity-specific topics in con-

junction with the testing topic model. The metric we report is the

percentage of correctly disambiguated references. For references

consisting of multiple words, we require that a majority of the an-

notations belong to the ground truth entity for it to be adjudged a

correctly disambiguated reference.

The dataset we use for our experiment is an extract of Wikipedia

describing people and is described in full detail in Section 4. Essen-

tially, we downloaded the html source for this extract, stripped out

all the html code keeping only the words and the intra-wiki links,

and partitioned each page into two parts. We construct a training

corpus comprising all the first parts of the pages and present this to

either LDA or CE to learn entity-specific topics from. In this train-

ing phase, the intra-wiki links provide entity-word asscociations to

learn from. While testing, we present the second parts of the pages

to the testing model along with a learnt set of φes. In this phase,

we do not provide the intra-wiki links to the testing model but use

these as ground truth annotations instead.

The bar graph in Figure 3 shows the results. CE outperforms

LDA by ≈ 13% and this is especially surprising given that LDA

has more parameters, α, β as opposed to CE’s β. We also com-

pared against the author-topic model (AT) [24], which was origi-

nally proposed to model collaboratively written documents such as

scientific publications. To adapt AT for entity disambiguation, we

simply replace authors with entities. AT, like LDA, does not handle

proximity. Moreover (adapted) AT posits that, an entity is a distri-

bution over latent topics and topics are distributions over words.

Nevertheless, it is possible to recover φes given the two learnt (sets

of) distributions. Unfortunately, this results in a severely loss of

sparsity which implies that almost every entity can now produce

every word in the vocabulary. This drops disambiguation accuracy

on held-out documents to almost 0%.

From these experiments, it seems clear that the best topic mod-

els for entity disambiguation should 1) account for proximity while

learning and 2) should directly model φe to maintain sparsity. Nei-

ther LDA nor AT do both of these. In the next section, we develop

on CE’s rudimentary handling of proximity to produce improved

models besides adding a group learning component to it to enable

collective disambiguation.

3. COLLECTIVE CONTEXT-AWARE TOPIC

MODELS
We begin by revisiting the Contiguous-Entity model from the

last section. Currently, this model only takes into account one level

of context, i.e. the previous word’s entity. In reality however, units

of discourse can easily span larger syntactic units such as sentences

and paragraphs. We next present a general model, wherein multiple

levels of context can be included and it is left upto the topic model’s

inference mechanism to optimally choose among them, so that co-

herent entity-specific topics can be learnt from the knowledge base.

Following that, we present group-learning topic models to exploit

collective disambiguation.
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Ew

ξ

e w φ β

Figure 4: Context-aware topic model

Algorithm 4: Gibbs sampling for CA

Sampling step:

we ∼
β+n−

w,e

|V |β+n−

e

P

ξ

δ(e∈Ewξ)

|Ewξ|
, ∀d ∈ D, ∀w ∈ d, w /∈ Ad

φ computation:

φe(w) ∝ β + nw,e,
P

w∈V φe(w) = 1, ∀e ∈ E

3.1 Context-Aware Topic Models
Recall that, in the CE model we use a coin flip to choose be-

tween the entity of the previous word and any entity from the set

Ed. To extend this process, we will need the following: the idea of

a multi-headed coin and the concept of a context. Intuitively speak-

ing, a context corresponds to a syntactic unit of discourse such as a

paragraph or a sentence. For the purposes of learning word-entity

associations however, we are interested in connecting text to enti-

ties. Thus it is useful to note that, given a document in a knowledge

base and a word in it, it is straightforward to collect all the entities

corresponding to a particular context for that word. Consider for

instance, the paragraph context. We first locate the paragraph the

word is present in, and then collect all anchor text from the para-

graph and the destination entities they point to. This set of entities

pointed to from the paragraph forms the paragraph context for the

word. Sentence contexts can be defined similarly. Thus, for the

purposes of this paper, a context for a word is denoted by a set of

entities. Note that, for w ∈ d, we always include ed in the context

no matter which context (sentence or paragraph) it is. It should be

clear now that Ed, as was defined in the last section, represents the

document-level context.

Let c denote a context, examples are the whole document, para-

graphs, sentences and previous word. Let C denote a set of contexts

we are interested in modeling. For instance, C = {doc, prev} de-

notes the document context and the previous word which is exactly

what the CE model takes into account. For our experiments that

we report in Section 4, we set C = {doc, para, prev}. Given such a

set of contexts, one can define the Context-Aware topic model (CA)

whose plate model is shown in Figure 4. The generative semantics

of CA are as follows. In Figure 4, ξ represents an unbiased multi-

headed coin with |C| heads. Everytime we want to annotate a word

in the knowledge baseD, we flip ξ to choose a context. In Figure 4,

Ew denotes a hyperset of entities such that ∀c ∈ C, Ewc ∈ Ew con-

tains the entities pertaining to context c for word w. The remainder

of the generative process is thus, to choose an entity e uniformly at

random from Ewξ and generate w from e using φe. Note that, the

self-loop on e in Figure 4 is included only if prev is included in C.

It would be cumbersome to keep track of various counts associ-

ated with each context. Thus, to design a simple and efficient Gibbs

sampling procedure, we prefer to marginalize over the ξ variable

and eliminate it from our analysis. First note that, all the contexts

we have mentioned until now share a convenient containment rela-

tionship in that each context is always contained in another context

(e.g., the sentence the word is in is contained in the paragraph and

so on). GS is possible even without this relationship, but is more

γ θd g r λ β

Figure 5: Group-learning topic model

Algorithm 5: Gibbs Sampling for learning groups

Sampling step:

rg ∼ (γg + n−d,g)
β+n−

dest(r),g

|E|β+n−

g

, ∀d ∈ D, ∀r ∈ d

φ computation:

λg(e) ∝ β + ne,g,
P

e∈E λg(e) = 1, ∀g = 1 . . . G

complicated and not assuming this relationship may have implica-

tions on how fast GS mixes and converges. Our goal is now to

generate a distribution that lets us choose entities from, to annotate

word w ∈ d:

Pr(e) =
X

ξ

Pr(ξ)Pr(e|Ewξ) =
X

ξ

1

|C|

δ(e ∈ Ewξ)

|Ewξ|
∝

X

ξ

δ(e ∈ Ewξ)

|Ewξ|

which means that, to compute the likelihood of choosing e we sim-

ply need to know which contexts of w e is present in and what the

sizes of those contexts are. For hierarchical contexts, we simply

need to know which is the smallest context e is present in and we

can then compute its probability. Of course, this probability needs

to be combined with e’s likelihood of generating w and Algorithm

4 describes GS for CA.

3.2 Learning Groups of Entities
Until now, we have concentrated on learning entity-specific top-

ics from the knowledge base. We would now like to shift focus

towards performing collective disambiguation and for this we will

also need to learn groups of co-occurring entities from the knowl-

edge base. The knowledge base D provides ample opportunities to

learn groups. For instance, just the fact that the same Wikipedia

page refers to multiple entities through intra-wiki links can be used

to learn groups, or we could first run any of the entity-specific topic

learning models we have introduced so far to annotate all words in

the knowledge base and subsequently, run the group-learning topic

model we will introduce shortly to learn groups. However, the sec-

ond approach risks transferring errors in annotations to errors in the

learnt groups and can also be inefficient simply because we are uti-

lizing a much larger set of annotations. Thus, we take the former

approach.

We represent groups the same way we represent entity-specific

topics, i.e., using multinomial distributions. Let λ represent a group

such that λ : E → [0, 1] and
P

e∈E λ(e) = 1 where once again,

E is the set of entities described in D. Thus, the entities mapped

to (relatively) larger values by λ are precisely the ones which are

part of this group. As often happens, since we will be describing

topic models to learn groups, λs we learn will usually end up being

sparse assuming we model these directly through our topic model.

One issue we will need to address later is, how many groups we

wish to learn fromD? This question will be more clearly answered

in the next subsection; for now we assume the user has a good idea

of what this number is and feeds it as a parameter G.

Figure 5 describes the plate model of a group-learning topic

model. In this plate model, the notion of document d is slightly dif-

ferent. As we discussed earlier, we will be using the natural group-

ing of intra-wiki links in Wikipedia to learn groups. More pre-

WWW 2012 – Session: Entity and Taxonomy Extraction April 16–20, 2012, Lyon, France

733



α θd

γ π

g r λ β

Figure 6: Non-parametric group-learning topic model

Algorithm 6: Gibbs sampling for learning groups (non-param.)

Sampling step:∀d ∈ D, ∀r ∈ d do

rg ∼

8

>
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>
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dest(r),g

|E|β+n−

g

if g /∈ Gd

φ computation:

λg(e) ∝ β + ne,g,
P

e∈E λg(e) = 1, if ∃r s.t. re = g

cisely, given a document from D, we remove all words and simply

collect all the destination entities of the links appearing in this doc-

ument and form a set out of these entities. This set of entities and

the entity described in this document (essentially recreating Ed) is

what forms a document d for group learning purposes and each en-

tity mentioned in it is essentially a reference r. The plate model

described in Figure 5 is essentially LDA run in such a setup. The

generative model is thus as follows. To generate d, we first generate

a distribution over groups 1 . . . G referring to it by θd. To generate

each reference r ∈ d, we simply choose a group g using mult(θd)
and then generate the entity e represented by r from λg(e). Dir(β)
represents the common prior for all λg, g = 1 . . . G. GS for this

model is shown in Algorithm 5 which uses counts analogous to Al-

gorithm 1 where we described GS for LDA. Here, dest(r) denotes

the entity r represents and rg denotes the group r has been anno-

tated with. Thus, ne,g is the number of times a reference pointing

to e has been assigned group g in the corpus, ng is the number of

times g has been used to annotate any reference in the corpus and

n−d,g is the number of times references in d have been annotated

with g not counting the current reference for which this sampling

step is being performed. γ and β are familiar hyperparameters. In

this case, γ is to be treated as a vector with γg denoting the relative

preference for using group g to annotate with. Both γ and β can be

learnt using Minka’s updates [19] just as in the previous models.

3.3 Learning the Number of Groups
The main issue with our group-learning topic model is how to set

G. In the recent past, there have been proposals for non-parametric

variants of LDA wherein the model automatically determines the

number of topics required [28]. Fortunately, since the group-learning

model we introduced earlier resembles LDA these techniques are

directly applicable. Unfortunately, they are difficult to control.

When we tried them on our extract of Wikipedia, these either grossly

under-estimated or over-estimated the number of groups. Moti-

vated by this and by practical considerations, we now present a ver-

sion of a non-parametric group-learning topic model that is easy to

apply and does not depend overly on the user to specify the correct

number of groups.

Notice that, even though the user may not know the exact, correct

number of groups of entities in the knowledge base, s/he may still

be able to specify a loose upper-bound on G. The topic model itself

can then choose how many groups it needs to fit the data well. For

instance, for our experiments in Section 4, we used an upper-bound

of roughly |E|/4 groups to produce good results. In a knowledge

γ θd g

λ

e w φ

Figure 7: Collective entity disambiguation model

Algorithm 7: Gibbs Sampling with λgs and φes

Sampling step:

we ← 〈g, e〉 ∼ λg(e)φe(w)(n−d,g + γg), ∀d ∈ Dtest, ∀w ∈ d

base with about 16, 500 entities, one can hardly expect more than

5000 groups (which is possible but one hopes unlikely).

In the model we present next, the assumption is that the user

has specified the upper-bound over the number of groups using a

parameter Ĝ and this model has close connections to the work pre-

sented in [28]. Figure 6 shows the plate model and the generative

assumptions are as follows. Besides the normal LDA generative

process, we will also need a global prior distribution over groups.

Let π denote a multinomial distribution such that π : 1 . . . Ĝ →
[0, 1] and

PĜ
g=1 π(g) = 1. We need π because we would like to

choose groups on demand as and when required by a document.

Essentially, the generative process now changes to as follows. We

first generate λg ∼ Dir(β), ∀g = 1 . . . Ĝ and π ∼ Dir(γ). Just

as in LDA, we also generate for θd ∼ Dir(α), ∀d ∈ D. For each

reference r ∈ d, we now choose g using the following strategy:

g ∼



mult(θd) if g ∈ Gd

mult(π) o.w.

where Gd denotes the set of groups currently used to annotate ref-

erences in d. Finally, we generate dest(r) from λg .

In our earlier group learning topic model (Algorithm 5), one

factor that goes into deciding which group g is used to annotate

reference r is how many times g has been used to annotate other

references pointing to dest(r) in the corpus. This is in fact, the

numerator in the second term in the sampling step in Algorithm 5.

This leads to a clustering effect where the same group gets chosen

to annotate references pointing to e. In the modified model we just

presented, such a clustering happens at a document level too where,

when we include g to annotate a reference in document d for the

first time one is likely to choose a group that is used relatively more

often in the other documents in the corpus. This clustering effect

keeps some degree of control over how many groups we end up us-

ing from Ĝ and it is usually the case, that the total number of groups

used to annotate references with in the corpus is much smaller than

Ĝ. In the end, we only compute λs for groups that have been used

to annotate at least one reference in the corpus. GS for the above

model is described in Algorithm 6 where the only new count vari-

able is m−g which is the number of documents (discounting the

one whose reference we are sampling for) where group g has been

used to annotated references. In the sampling step, the first clause

gets invoked if g is already in use in d, otherwise we invoke the

second clause involving hyperparameter α and the new count m−g .

The derivation for this sampling step is described in Appendix A,

which also discusses how to set the hyperparameters α, β, γ.

3.4 Collective Entity Disambiguation
Having defined the topic models we need to learn entity-specific

topics and groups from the knowledge baseD, we now need a topic
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model that can disambiguate references from running text using

these learnt quantities. Figure 7 describes the plate model for such

a topic model and Algorithm 7 describes its GS inference. The

generative assumptions are as follows. We assume each unseen test

document d is a distribution over groups and generate a distribution

θd ∼ Dir(γ). Subsequently, to annotate each word in d we first

choose a group g ∼ mult(θd), an entity e from g e ∼ mult(λg)
using the learnt groups and finally, we generate the word using the

entity-specific topics w ∼ mult(φe). The GS (Algorithm 7) for

this model utilizes a set of learnt λg ,φe and assigns to each word

w a 〈g, e〉 pair consisting of a group and an entity. Even though,

we only check whether we assigned the correct entity to the words

in the reference, we need the group assignments to the words to

estimate n−d,g which is present in the last term of the sampling step.

Hence, the assignment of a group-entity pair instead of annotating

words with just entities. Note that, both group-learning models

described in this section also learn γ hyperparameters, which is a

vector with γg denoting the relative preference for group g, and the

same γ is required to run GS in Algorithm 7.

3.5 Further Details
The Gibbs sampling inference algorithms we have described so

far are fairly simple and can be implemented in a straightforward

manner using a few nested loops. However, to achieve an efficient

implementation one needs to keep a few things in mind such as

caching counts, i.e., nd,e, nw,e, ne, nd,g, ne,g, ng and mg , in ap-

propriately chosen data structures (hashtables or integer arrays) for

quick lookup. Moreover, note that it may not be possible to store all

entity-specific topics, i.e, φe, ∀e ∈ E, in a double matrix. |E|×|V |
is usually too large. This is where we need to exploit sparsity in

φe, which usually holds in the case of φes learnt with topic models.

Further optimizations for speeding up topic models such as clever

re-ordering of entities while GS is being performed have also been

explored in prior works [23].

4. EXPERIMENTS
In this section, we empirically compare the proposed approaches.

We begin by describing the dataset and the approaches we compare

against, followed by reporting on their performance.

4.1 The Dataset
The dataset we use for our experiments is an extract of Wikipedia

describing people and includes sportspeople (basketball, football,

baseball and tennis players), actors, musicians and scholars. We

downloaded the source of these webpages and then stripped them

of their html code leaving only the words and intra-wiki links. The

final corpus contained 16,548 pages with each page describing a

different entity interconnected by 59,161 intra-wiki links with a

vocabulary size of 221,782 and a total of 9,958,728 words in the

corpus. For our experiments, we required disjoint training and test

sets so that we could learn entity-specific topics and groups from

the former and test on the latter. To ensure that we faced no un-

known entities while testing, we split each Wikipedia page hori-

zontally and performed four-fold cross validation. More specifi-

cally, from each page we separate out the first paragraph and divide

the remaining paragraphs into four roughly equal (disjoint) parts.

The ith part from each page then forms part of the test set while

the remaining three parts along with the first paragraph forms the

training set. This is repeated for i = 1 . . . 4 and the numbers we

report are averages over all four folds of cross validation. The met-

ric we report is disambiguation accuracy, defined as the fraction of

references correctly disambiguated expressed as a percentage.
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Figure 8: Performance against discriminative baselines.

4.2 Algorithms Compared
Of the baseline approaches we consider, two are based on logis-

tic regression and a third one is the SVM-based approach proposed

in [16]. To adapt discriminative approaches, [16] uses a windowing

scheme where references are first extracted from the text that needs

to be disambiguated. A window of pre-specified number of words

is extracted from around each reference. This window (set to 20

for our experiments) of words is then compared against a candi-

date entity’s descriptive page in the knowledge base and converted

into a high-dimensional feature vector. A suitably trained SVM

is then used to assign this reference-candidate entity pair a score.

Finally, the highest scoring candidate entity is deemed the disam-

biguation of the reference. [16] also proposes performing collective

disambiguation by looking at all the references in the test document

and assigning them entities so that their relatedness [18] improves.

However, when we tried this approach the SVM (libsvm [8]) be-

came too slow to be viable3. Instead, we used a scalable implemen-

tation of logistic regression [22] to implement this technique. In our

experiments, we denote the content-only SVM-based approach of

[16] by “SVM”, its content-only logistic regression couterpart by

“LR” and collective logistic regression-based approach by “LR-C”.

Of the topic models proposed in this paper, we (re-)report results

of LDA and CE tested with the testing topic model from Section 2,

CA and combinations of CA and the group-learning models tested

with the testing topic model proposed in Section 3. We denote the

combination of CA and the non-parametric group-learning model

by “CA+G”, and CA with the group-learning model that requires

specifying the number of groups by “CA+kG”, where k is the spec-

ified group count.

For all the Gibbs sampling procedures we run, we use 1000

outer iterations for burn-in and subsequently collect 10 samples,

each separated by 100 outer iterations so that consecutive samples

are not dependent. All our experiments were run on a dual core

2.4GHz Xeon processor machine with 16GB RAM. Our code is

implemented in JAVA.

4.3 Performance
Figure 8 charts the performanace of the various approaches. Even

though LDA and CE perform the poorest, CE still manages to per-

form as well as LR perhaps indicating that the windowing-based

3
Took over two days to train.
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approach of adapting discriminative models may be losing out on

useful features that fall outside the window. Next comes SVM and

it is interesting to see that SVM performs better than LR perhaps

indicating that SVMs are better classifiers than logistic regression,

although this may very well be a statement about the particular lo-

gistic regression implementation we were using [22]. After that is

the collective approach of using logistic regression combined with

the relatedness measure which improves upon SVM’s performance

by about 5%. After that, comes the topic models we proposed in

the previous section. CA and CA+G (the non-parametric version)

stand at approximately 75% and 82%, showing that incorporating

collective disambiguation provides a boost of almost 8%. Finally,

we also report the best result of learning groups and combining it

with CA by specifying the number of groups. As it turns out, the

best result was obtained at the setting G = 20 and CA+20G ob-

tains a disambiguation accuracy of more than 86% which is 23%

higher than the best content-only windowing approach (SVM) and

18% higher than the discriminative collective technique (LR-C).

We also report disambiguation accuracies obtained by CA+kG

for varying k in Figure 9. In this plot, the x-axis shows k (in

logscale), y-axis depicts disambiguation accuracy obtained and the

horizontal blue line shows the accuracy of CA+G. Clearly, there is

an optimal number of groups but setting it higher than this num-

ber reduces accuracy fairly gradually. From Figure 8, we know

that CA+G achieves 3.86% less than the best fixed count group-

learning topic model, that and the fact that CA+G beats all the other

approaches implies CA+G’s performance is quite satisfactory. Al-

though, this also shows that if we had more knowledge about how

many groups there were in the knowledge base then we could gain

an additional boost.

We looked further into the performance of CA+G to see how well

it was identifying groups and across the four-fold cross validation

from each of the different training sets it identified 777, 773, 756

and 780 groups, respectively, which is an average of 771.5 groups

with a standard deviation of 1.2%, a fairly stable estimate. This

seems very different from the optimal number of groups determined

by CA+kG found on the basis of optimal disambiguation accuracy.

However on further investigation, we found out that most of 700+

groups determined by CA+G comprised groups formed out of enti-

ties for whom we did not have too many intra-wiki links pointing to

them in our extract of Wikipedia, thus indicating that these might

be fleeting or unreliable groups anyway.

4.4 Topics and Groups
Finally, we also report some of the entity-specific topics and

groups learnt by the models proposed in this paper. Figure 10

shows a few of the groups discovered by listing the top-5 entities

in order of decreasing membership probabilities. Most of these in-

tuitively make sense. Note that, Albert Einstein is a member of

two separate groups of physicists one of which was interested in

measuring the speed of light and the other in the nature of light.

The actors group contains both actors who played the character

of Albus Dumbledore in the Harry Potter movies (Richard Har-

ris followed by Michael Gambon). Similarly, Figure 11 shows

the top-11 most probable words in a few of the topics discovered.

Notice how Albert Einstein’s topic includes “relativity”, Alan Tur-

ing’s topic includes “Bletchley” (of Bletchley Park), Paul Erdos’s

includes “graph” and the previously mentioned actor Richard Har-

ris’s topic includes “Dumbledore”.

4.5 Discussion
In this section, we reported on the disambiguation accuracies ob-

tained by the topic models proposed in this paper and how their
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Figure 9: Results at varying number of groups.

performance compared with state-of-the-art baselines from the lit-

erature. We showed that even without any special knowledge and

armed with just a knowledge base it is possible to obtain an im-

provement of about 14% in disambiguation accuracy over the best

performing baseline (CA+G vs. LR-C). We also showed that if

we had a good idea of certain parameters (e.g., the number of

groups present in the knowledge base) we could approach improve-

ments of close to 18% compared to the best performing baselines

(CA+20G vs. LR-C). In absolute terms also, the disambiguation

accuracies obtained by CA+G (82.21%) and CA+20G (86.07%)

are quite respectable especially considering the simplicity of all the

Gibbs sampling procedures reported in the paper and how easy they

are to implement.

Performance in terms of accuracies however, form a story only

half told. What also matters is the time taken to run these pro-

cedures. All our topic models (CE, CA, CA+G, CA+kG) run in

the 8-10 hour time range on the dataset used for our experiments,

making all of these models viable offline techniques. The ques-

tion obviously is, how much time would these models take to learn

from a larger knowledge base that describes more than the 16,548

entities that we were dealing with. Our topic models scale between

linearly and quadratically with the size of the dataset (in terms of

the number of entities), and this is where one would want to utilize

faster inference techniques such as the distributed ones proposed

for topic models in [21, 27] or the variational inference techniques

evaluated in [2]. Of these two options, distributed algorithms for

topic models is still a topic of active research and currently these

algorithms only work for LDA, to the best of our knowledge. Dif-

ferent topic models (such as the ones described in this paper), will

likely require new strategies to run inference in a distributed set-

ting.

5. RELATED WORK
Most of the prior work from entity disambiguation has already

been reviewed in Section 1. As mentioned in the introduction, [26]

is the only prior work that proposes using topic models. However,

to implement collective disambiguation they attempt to learn from

Wikipedia’s category hierarchy which is crowd-sourced thus ne-

cessitating pruning. In the end, [26] states that pruning results in

a three-level hierarchy whose bottom-most level contains entities

and topmost level contains one root. The middle level contains
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(Physicists: Light)

Richard Feynman 8.5%

Albert Einstein 8.3%

Stephen Hawking 8.2%

Robert Millikan 5.4%

Albert Michelson 5.3%

(Physicists: Matter)

Albert Einstein 12%

Niels Bohr 12%

Arnold Sommerfeld 4.9%

Werner Heisenberg 4.7%

Enrico Fermi 4.0%

(Mathematicians)

Paul Erdos 24%

Bela Bollobas 6.5%

Timothy Gowers 4.3%

Laszlo Lovasz 2.8%

George Szekeres 2.6%

(Computer Scientists)

Norbert Wiener 15%

Heinz von Foerster 7.1%

William Ross Ashby 6.6%

Alan Turing 5.7%

John von Neumann 4.2%

(Actors)

Peter O’Toole 16%

Richard Burton 11%

Richard Harris 9.3%

Emlyn Williams 3.0%

Michael Gambon 2.2%

(Basketball Players)

Larry Bird 7.2%

Michael Jordan 6.8%

Clyde Drexler 5.0%

Wilt Chamberlain 5.0%

Charles Barkley 4.0%

Figure 10: A few of the more popular groups.

eight non-leaf nodes which form groups. This is a very coarse hi-

erarchy compared to what CA+G learns with groups numbering in

excess of 700. It is not clear how [26]’s techniques can provide

fine-grained hierarchies. Our approach of learning groups is closer

to computing relatedness scores [16, 18] since relatedness is com-

puted from Wikipedia’s hyperlinks which is what we use too.

Among other works from closely related areas, word sense dis-

ambiguation [5] and entity resolution [3, 25] have also made use

of topic models. The main differentiating factor between these ar-

eas and entity disambiguation is the assumption of the presence

of a learnable catalog. Topic models for entity resolution and word

sense disambiguation usually assume an unsupervised setting. Thus,

none of [3, 5, 25] attempt to learn entity-specific topics nor groups

of entities prior to disambiguating references in unseen text.

Our non-parametric group learning topic model is a simplifica-

tion of hierarchical Dirichlet processes (HDP) [28] keeping in mind

practical considerations. Whereas our model assumes that an up-

per bound on the number of groups has been specified and that

these groups are available for use when a document needs them,

an HDP is in theory, able to generate new groups on demand. We

argue however that, given the number of entities in the knowledge

base it is possible to specify a loose upper bound on the number of

groups. Our experiments show that, even when we ran CA+G with

Ĝ = 5000 the model used only about 770 groups and stabilized.

In our experience, HDPs are extremely difficult to control. While

some parameter settings send it on a group generation spree, others

do not let it generate nearly enough groups.

Our CE model is similar to topic segmentation [29, 30, 14]. The

initial LDA model treated a document as a bag of words and did not

model how topics transitioned in text. Later works have improved

upon this by disallowing topic transitions mid-sentence [14], or by

conditioning the topic of a word on the previous word [29], or by

modeling n-grams [30]. It is however, difficult to see how to ex-

tend these models so that they can handle multiple levels of context

simultaneously like the proposed CA model does.

6. CONCLUSION
In this paper, we described topic models for entity disambigua-

tion. Whereas previous work has illustrated the effective use of

topic models, those models did not incorporate aspects such as

word-entity proximity which helps learn high-quality, discrimina-

tive catalogs. Our proposed topic models improve on previous

work by not only incorporating proximity but also learning groups

of co-occurring entities that help perform collective disambiguation

Albert Einstein

einstein 2.0%

theory 0.9%

physics 0.8%

albert 0.7%

relativity 0.7%

work 0.5%

light 0.4%

einsteins 0.4%

general 0.4%

time 0.3%

quantum 0.3%

Paul Erdos

erds 3.2%

theory 1.9%

number 1.5%

paul 1.2%

graph 1.0%

papers 1.0%

mathematician 0.9%

combinatorics 0.6%

mathematics 0.6%

university 0.6%

theorem 0.6%

Stephen Hawking

hawking 1.7%

universe 0.8%

stephen 0.7%

science 0.5%

cosmology 0.4%

cambridge 0.4%

hawkings 0.4%

theoretical 0.4%

time 0.3%

life 0.3%

university 0.3%

Alan Turing

turing 2.7%

computer 1.0%

alan 0.8%

machine 0.7%

park 0.7%

work 0.6%

turings 0.6%

bletchley 0.5%

computing 0.5%

worked 0.5%

war 0.4%

Kurt Godel

gdel 2.6%

logic 1.6%

kurt 1.1%

theory 1.0%

mathematical 1.0%

arithmetic 0.9%

set 0.8%

gdels 0.6%

axioms 0.5%

system 0.5%

theorem 0.4%

Richard Harris

harris 2.2%

role 0.9%

film 0.8%

actor 0.7%

play 0.5%

richard 0.5%

potter 0.5%

adaptation 0.4%

films 0.4%

children 0.3%

dumbledore 0.3%

Figure 11: Topics of six popular people.

without requiring the user to specify the exact number of groups.

In this respect, our proposed models are non-parametric extensions

of topic models where determining the correct number of groups

is part of the learning process and all the remaining parameters are

learnt by optimizing joint likelihood of the data. We also showed

how to use two different topic models to learn interesting and useful

parameters from the knowledge base. These parameters are subse-

quently combined, in a principled manner, using a third topic model

to obtain excellent disambiguation performance on unseen text. In

the end, disambiguation performance is only limited by the quality

of the input knowledge base. One metric to measure the quality of a

knowledge base is coverage. For a rough count, Wikipedia contains

descriptions of a few million entities whereas the planet contains a

few billion people. Even though we do not expect all entities to be

mentioned in unstructured text, we do hope to reduce such an acute

dependency on available knowledge bases in future work.
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APPENDIX

A. INFERENCE FOR GROUP DISCOVERY
To set up Gibbs sampling for the model shown in Figure 6, we

need show how to sample a group for a reference given annota-

tions to all other references in the corpus. More precisely, we need

to compute for a given reference r, the conditional distribution

Pr(re = g|r−,g−; α, β, γ) , ∀g ∈ G, where r
− and g

− repre-

sent annotations to the rest of the references in the corpus. For this,

we will need the joint probability distribution which can be simply

read off the plate model (Figure 6):

Pr(r,g, Θ, π, Λ, ; α, β, γ) (1)

= Pr(π|γ)

"

G
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# "
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∝
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3

7

7

5

where Gd is the set of groups used by document d to assign refer-

ences within it to, mg is the number of documents using group g
across the corpus, nge is the number of references which refer to

entity e assigned to g across the corpus and ndg is the number of

references in d assigned to g. Note that, the last term has a α
|Gd|

in the exponent because we assume the prior on θd is a symmetric

Dirichlet prior whose parameters add upto α.

We will now get rid of the useless parameters by integrating out

π, Λ and Θ. To do this, we will need the following identities:

Z G
Y

g=1

π
mg+γg−1
g dπ =

QG
g=1 Γ(mg + γg)

Γ(
P

g mg +
P

g γg)
(2)
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QE
e=1 Γ(nge + βe)

Γ(ng +
P

e βe)
(3)
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Γ(
P
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and finally, setting lim
Gd→∞

=

Q

g∈Gd
Γ(ndg)

Γ(nd + α)
(4)

where, to set the limit, we have simply set α/|Gd| to 0. Note that,

in Equation 4, if we add up the terms ndg in the numerator then this

differs from the denominator by exactly α. We will later pretend

that α is the probability mass of picking a new group from θd [20].

We now substitute Equations 2, 3 and 4 into Equation 1:

Pr(r,g; α, β, γ) ∝

QG
g=1 Γ(mg + γg)

Γ(
P

g mg +
P

g γg)
(5)
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Having described the joint distribution in terms of counts, to com-

pute Pr(re = g|r−,g−; α, β, γ) we now need to imagine a corpus

without r. This corpus’ joint distribution will be of the same form

as Equation 5 with a few terms missing. If r were annotated with a

group g already in use in the document r belongs to then there are

differences only in the second and third terms of Equation 5. On

the other hand, if g is not in use in the document r belongs to, then

there are differences in the first and second terms only. Dividing

the joint of the full corpus by the joint of the corpus with r missing

gives us the conditional probability distribution we need [13]:

Pr(d ∋ re ← g|r−,g−; α, β, γ)

∝

8

>

<

>

:

n−

g,dest(r)
+βdest(r)

n−

g +
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e βe
n−d,g if g ∈ Gd
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+βdest(r)

n−

g +
P

e βe
α

m−

g +γg
P

g m−

g +
P

g γg
if g /∈ Gd

To recover Λ, which will be used while testing with the topic

model described in Figure 7, we simply collect all g which have

been assigned at least one reference in the corpus and compute the

corresponding multinomials describing the groups:

∀g ∈ G s.t. ng > 0 : λg(e) ∝ ng,e + βe,
X

e

λg(e) = 1

To learn the hyperparameters α, β and γ, we simply pretend that

at the time of updating these the number of groups in use were

the number of groups we had originally begun sampling with [20].

Thus, the group discovery process does not interfere with learning

the hyperparameters and we can simply use Minka’s updates [19].
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