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• Variations on a themeinference for mixtures• Parallel inferenceparallelization templates• Samplers
scaling up LDA



Inference forMixture Models
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deFinetti
Any distribution over exchangeable random variables

can be written as conditionally independent.

p(x1, . . . , xn) =

Z
dp(✓)

nY

i=1

p(xi|✓)

xi

xi

ϴ

Inference should be easy -  ϴ|xi and xi|ϴ



Conjugates and Collapsing
• Exponential Family

• Conjugate Prior

• Posterior

• Collapsing the natural parameter

p(x|✓) = exp (h�(x), ✓i � g(✓))

p(✓|µ0,m0) = exp (m0 hµ0, ✓i �m0g(✓)� h(m0µ0,m0))

p(✓|X,µ0,m0) / exp (hm0µ0 +mµ[X], ✓i � (m0 +m)g(✓)� h(m0µ0,m0))

p(X|µ0,m0) = exp (h(m0µ0 +mµ[X],m0 +m)� h(m0µ0,m0))

datadata
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Clustering & Topic Models
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Clustering & Topic Models
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topic
distributions
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clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices



Clustering & Topic Models
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V1 - Brute force 
maximization

• Integrate out latent 
parameters θ and ѱ

• Discrete maximization 
problem in Y

• Hard to implement
• Overfits a lot (mode is 

not a typical sample)
• Parallelization infeasible
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Hal Daume; Joey Gonzalez



V2 - Brute force 
maximization

• Integrate out latent parameters y

• Continuous nonconvex optimization 
problem in θ and ѱ 

• Solve by stochastic gradient descent 
over documents

• Easy to implement
• Does not overfit much
• Great for small datasets
• Parallelization difficult/impossible
• Memory storage/access is O(T W)

(this breaks for large models)
• 1M words, 1000 topics = 4GB
• Per document 1MFlops/iteration
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• Approximate intractable joint 
distribution by tractable factors

• Alternating convex optimization problem 
• Dominant cost is matrix matrix multiply
• Easy to implement
• Great for small topics/vocabulary
• Parallelization easy (aggregate 

statistics)
• Memory storage is O(T W)

(this breaks for large models)
• Model not quite as good as sampling

V3 - Variational 
approximation
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log p(x) � log p(x)�D(q(y)kp(y|x))

=

Z
dq(y) [log p(x) + log p(y|x)� q(y)]

=

Z
dq(y) log p(x, y) +H[q]



V4 - Uncollapsed 
Sampling

• Sample yij|rest
Can be done in parallel

• Sample θ|rest and ѱ|rest
Can be done in parallel

• Compatible with MapReduce 
(only aggregate statistics)

• Easy to implement
• Children can be conditionally 

independent*
• Memory storage is O(T W)

(this breaks for large models)
• Mixes slowly
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• Integrate out latent 
parameters θ and ѱ

• Sample one topic assignment 
yij|X,Y-ij at a time from 

• Fast mixing
• Easy to implement
• Memory efficient
• Parallelization infeasible 

(variables lock each other) 

V5 - Collapsed 
Sampling
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• Integrate out latent 
parameters θ and ѱ
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• Collapsed sampler per 
machine

• Defer synchronization 
between machines

• no problem for n(t)
• big problem for n(t,w)

• Easy to implement
• Can be memory efficient
• Easy parallelization
• Mixes slowly/worse likelihood

V6 - Approximating 
the Distribution
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• Collapsed sampler

• Make local copies of state
• Implicit for multicore 

(delayed updates from samplers)
• Explicit copies for multi-machine

• Not a hierarchical model
(Welling, Asuncion, et al. 2008)

• Memory efficient (only need to view 
its own sufficient statistics)

• Multicore / Multi-machine
• Convergence speed depends on 

synchronizer quality

V7 - Better Approximations 
of the Distribution
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• Integrate out latent θ and ѱ

• Chain conditional probabilities

• For each particle sample

• Reweight particle by next step 
data likelihood

• Resample particles if weight 
distribution is too uneven

V8 - Sequential 
Monte Carlo
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• Integrate out latent θ and ѱ

• Chain conditional probabilities

• For each particle sample

• Reweight particle by next step 
data likelihood

• Resample particles if weight 
distribution is too uneven

V8 - Sequential 
Monte Carlo

p(X,Y |↵,�)

Canini, Shi, Griffiths, 2009
Ahmed et al., 2011

p(X,Y |↵,�) =
mY

i=1

p(xi, yi|x1, y1, . . . xi�1, yi�1,↵,�)

yi ⇠ p(yi|xi, x1, y1, . . . xi�1, yi�1,↵,�)

p(xi+1|x1, y1, . . . xi, yi,↵,�)

• One pass through data
• Data sequential 

parallelization is open problem
• Nontrivial to implement

• Sampler is easy
• Inheritance tree through particles 

is messy
• Need to estimate data likelihood 

(integration over y), e.g. as part of 
sampler

• This is multiplicative update 
algorithm with log loss ...



Uncollapsed Variational
approximation
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Parallel Inference
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Synchronization
• Child updates local state

• Start with common state
• Child stores old and new state
• Parent keeps global state

• Transmit differences asynchronously
• Inverse element for difference
• Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)

local to global global to local
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global
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Synchronization
• Naive approach (dumb master)

• Global is only (key,value) storage
• Local node needs to lock/read/write/unlock master
• Needs a 4 TCP/IP roundtrips - latency bound

• Better solution (smart master)
• Client sends message to master / in queue / master incorporates it
• Master sends message to client / in queue / client incorporates it
• Bandwidth bound (>10x speedup in practice)
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Distribution
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server e.g. via consistent hashing

m(x) = argmin
m2M

h(x,m)



Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)
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Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
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Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1
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Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously
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Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously
• Use Luby-Rackoff PRPG for load balancing

• Efficiency guarantee

4 simultaneous connections are sufficient



Scalability



Samplers



Sampling
• Brute force sampling over large number of items is 

expensive
• Ideally want work to scale with entropy of 

distribution over labels.
• Sparsity of distribution typically only known 

after seeing the instances
• Decompose (dense) probability into dense 

invariant and sparse variable terms
• Use fast proposal distribution & rejection sampling



Exploiting Sparsity
• Decomposition (Mimno & McCallum, 2009)

Only need to update sparse terms per word

• Does not work for clustering (too many factors)

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

dense but 
‘constant’

sparsesparse



Exploiting Sparsity
• Context LDA (Petterson et al., 2009)

The smoothers are word and topic dependent

• Simple sparse factorization doesn’t work
• Use Cauchy Schwartz to upper-bound first term

p(t|wij) / �(w, t)
↵t

n(t) + �̄(t)
+ �̄(w, t)

n(t, d = i)

n(t) + �̄(t)
+

n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄(t)

topic dependent, dense

X

t

�(w, t)
↵t

n(t) + �̄(t)
 k�(w, ·)k

����
↵·

n(·) + �̄(·)

����



Collapsed vs Variational
• Memory requirements (1k topics, 2M words)

• Variational inference: 8GB RAM (no sparsity)
• Collapsed sampler: 1.5GB RAM (rare words)

• Burn-in & sparsity exploit saves a lot
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Fast Proposal

• In reality sparsity 
often not true for 
real proposal

• Guess sparse proxy

• In the storylines 
model this are the 
entities



• Variations on a themeinference for mixtures• Parallel inferenceparallelization templates• Samplers
scaling up LDA


