
Templates
for scalable data analysis

3 Distributed Latent Variable Models

Amr Ahmed, Alexander J Smola, Markus Weimer
Yahoo! Research & UC Berkeley & ANU

• Variations on a themeinference for mixtures• Parallel inferenceparallelization templates• Samplers
scaling up LDA

Inference forMixture Models

Clustering

Clustering

Clustering

Clustering

airline

restaurant

university

Generative Model

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...
objects

cluster ID

Generative Model

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

p(X,Y |✓,�, µ) =
nY

i=1

p(xi|yi, �, µ)p(yi|✓)

objects

cluster ID

deFinetti
Any distribution over exchangeable random variables

can be written as conditionally independent.

p(x1, . . . , xn) =

Z
dp(✓)

nY

i=1

p(xi|✓)

xi

xi

ϴ

Inference should be easy - ϴ|xi and xi|ϴ

Conjugates and Collapsing
• Exponential Family

• Conjugate Prior

• Posterior

• Collapsing the natural parameter

p(x|✓) = exp (h�(x), ✓i � g(✓))

p(✓|µ0,m0) = exp (m0 hµ0, ✓i �m0g(✓)� h(m0µ0,m0))

p(✓|X,µ0,m0) / exp (hm0µ0 +mµ[X], ✓i � (m0 +m)g(✓)� h(m0µ0,m0))

p(X|µ0,m0) = exp (h(m0µ0 +mµ[X],m0 +m)� h(m0µ0,m0))

datadata

Conjugates and Collapsing

xi

xi

ϴ

m0

μ0

m0

μ0

deFinetti
collapsed

representation

Clustering & Topic Models

x

y

θ

prior

cluster
probability

cluster
label

instance x

y

θ

prior

topic
probability

topic label

instance

clustering Latent Dirichlet Allocation

α α

Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices

Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices

estimate
sample/optimize

estimate
sample/optimize

V1 - Brute force
maximization

• Integrate out latent
parameters θ and ѱ

• Discrete maximization
problem in Y

• Hard to implement
• Overfits a lot (mode is

not a typical sample)
• Parallelization infeasible

x

y

θ

α

ѱ

β

x

y

α

β

p(X,Y |↵,�)

Hal Daume; Joey Gonzalez

V2 - Brute force
maximization

• Integrate out latent parameters y

• Continuous nonconvex optimization
problem in θ and ѱ

• Solve by stochastic gradient descent
over documents

• Easy to implement
• Does not overfit much
• Great for small datasets
• Parallelization difficult/impossible
• Memory storage/access is O(T W)

(this breaks for large models)
• 1M words, 1000 topics = 4GB
• Per document 1MFlops/iteration

x

y

θ

α

ѱ

β

Hoffmann, Blei, Bach (in VW)

x

θ

α

ѱ

β

p(X, , ✓|↵,�)

• Approximate intractable joint
distribution by tractable factors

• Alternating convex optimization problem
• Dominant cost is matrix matrix multiply
• Easy to implement
• Great for small topics/vocabulary
• Parallelization easy (aggregate

statistics)
• Memory storage is O(T W)

(this breaks for large models)
• Model not quite as good as sampling

V3 - Variational
approximation

x

y

θ

α

ѱ

β

Blei, Ng, Jordan

y

θ

α

ѱ

β

log p(x) � log p(x)�D(q(y)kp(y|x))

=

Z
dq(y) [log p(x) + log p(y|x)� q(y)]

=

Z
dq(y) log p(x, y) +H[q]

V4 - Uncollapsed
Sampling

• Sample yij|rest
Can be done in parallel

• Sample θ|rest and ѱ|rest
Can be done in parallel

• Compatible with MapReduce
(only aggregate statistics)

• Easy to implement
• Children can be conditionally

independent*
• Memory storage is O(T W)

(this breaks for large models)
• Mixes slowly

x

y

θ

α

ѱ

β

2

2

1

*for the right model

• Integrate out latent
parameters θ and ѱ

• Sample one topic assignment
yij|X,Y-ij at a time from

• Fast mixing
• Easy to implement
• Memory efficient
• Parallelization infeasible

(variables lock each other)

V5 - Collapsed
Sampling

x

y

θ

α

ѱ

β

x

y

α

β

p(X,Y |↵,�)

Griffiths & Steyvers 2005

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

• Integrate out latent
parameters θ and ѱ

• Sample one topic assignment
yij|X,Y-ij at a time from

• Fast mixing
• Easy to implement
• Memory efficient
• Parallelization infeasible

(variables lock each other)

V5 - Collapsed
Sampling

x

y

θ

α

ѱ

β

x

y

α

β

p(X,Y |↵,�)

Griffiths & Steyvers 2005

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

• Collapsed sampler per
machine

• Defer synchronization
between machines

• no problem for n(t)
• big problem for n(t,w)

• Easy to implement
• Can be memory efficient
• Easy parallelization
• Mixes slowly/worse likelihood

V6 - Approximating
the Distribution

x

y

α

β
Asuncion, Smyth, Welling, ... UCI

Mimno, McCallum, ... UMass

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

• Collapsed sampler

• Make local copies of state
• Implicit for multicore

(delayed updates from samplers)
• Explicit copies for multi-machine

• Not a hierarchical model
(Welling, Asuncion, et al. 2008)

• Memory efficient (only need to view
its own sufficient statistics)

• Multicore / Multi-machine
• Convergence speed depends on

synchronizer quality

V7 - Better Approximations
of the Distribution

x

y

α

β
S. and Narayanamurthy, 2009
Ahmed, Gonzalez, et al., 2012

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

• Integrate out latent θ and ѱ

• Chain conditional probabilities

• For each particle sample

• Reweight particle by next step
data likelihood

• Resample particles if weight
distribution is too uneven

V8 - Sequential
Monte Carlo

x

y

α

β

p(X,Y |↵,�)

Canini, Shi, Griffiths, 2009
Ahmed et al., 2011

x

y

x

y
...

p(X,Y |↵,�) =
mY

i=1

p(xi, yi|x1, y1, . . . xi�1, yi�1,↵,�)

yi ⇠ p(yi|xi, x1, y1, . . . xi�1, yi�1,↵,�)

p(xi+1|x1, y1, . . . xi, yi,↵,�)

• Integrate out latent θ and ѱ

• Chain conditional probabilities

• For each particle sample

• Reweight particle by next step
data likelihood

• Resample particles if weight
distribution is too uneven

V8 - Sequential
Monte Carlo

p(X,Y |↵,�)

Canini, Shi, Griffiths, 2009
Ahmed et al., 2011

p(X,Y |↵,�) =
mY

i=1

p(xi, yi|x1, y1, . . . xi�1, yi�1,↵,�)

yi ⇠ p(yi|xi, x1, y1, . . . xi�1, yi�1,↵,�)

p(xi+1|x1, y1, . . . xi, yi,↵,�)

• One pass through data
• Data sequential

parallelization is open problem
• Nontrivial to implement

• Sampler is easy
• Inheritance tree through particles

is messy
• Need to estimate data likelihood

(integration over y), e.g. as part of
sampler

• This is multiplicative update
algorithm with log loss ...

Uncollapsed Variational
approximation

Collapsed
natural

parameters

Collapsed topic
assignments

Optimization overfits
too costly

easy
parallelization
big memory

footprint

overfits
too costly

easy to optimize
big memory

footprint
difficult

parallelization

Sampling
slow mixing
conditionally
independent

n.a.

fast mixing
difficult

parallelization

approximate
inference by

delayed updates

particle filtering
sequential

sampling
difficult

Parallel Inference

3 Problems

mean
variance

cluster weight

data cluster ID

3 Problems

global state
data local state

3 Problems

too big for
single machine

huge only local

3 Problems

data

local state

global state

Vanilla LDA

User
profiling

global state

3 Problems

data

local state

global state

Vanilla LDA

User
profiling

global state

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

asynchronous
synchronization

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

asynchronous
synchronization

partial view

Distribution

global
replica

rack

cluster

Distribution

global
replica

rack

cluster

Synchronization
• Child updates local state

• Start with common state
• Child stores old and new state
• Parent keeps global state

• Transmit differences asynchronously
• Inverse element for difference
• Abelian group for commutativity (sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

� x� x

old

x

old x

x

global x

global + �

Synchronization
• Naive approach (dumb master)

• Global is only (key,value) storage
• Local node needs to lock/read/write/unlock master
• Needs a 4 TCP/IP roundtrips - latency bound

• Better solution (smart master)
• Client sends message to master / in queue / master incorporates it
• Master sends message to client / in queue / client incorporates it
• Bandwidth bound (>10x speedup in practice)

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

� x� x

old

x

old x

x

global x

global + �

Distribution
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server e.g. via consistent hashing

m(x) = argmin
m2M

h(x,m)

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=2

2 3 3 3 1 1 3 2 0

0.78 < eff. < 0.89

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously
• Use Luby-Rackoff PRPG for load balancing

• Efficiency guarantee

4 simultaneous connections are sufficient

Scalability

Samplers

Sampling
• Brute force sampling over large number of items is

expensive
• Ideally want work to scale with entropy of

distribution over labels.
• Sparsity of distribution typically only known

after seeing the instances
• Decompose (dense) probability into dense

invariant and sparse variable terms
• Use fast proposal distribution & rejection sampling

Exploiting Sparsity
• Decomposition (Mimno & McCallum, 2009)

Only need to update sparse terms per word

• Does not work for clustering (too many factors)

p(t|wij) / �w
↵t

n(t) + �̄
+ �w

n(t, d = i)
n(t) + �̄

+
n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄

dense but
‘constant’

sparsesparse

Exploiting Sparsity
• Context LDA (Petterson et al., 2009)

The smoothers are word and topic dependent

• Simple sparse factorization doesn’t work
• Use Cauchy Schwartz to upper-bound first term

p(t|wij) / �(w, t)
↵t

n(t) + �̄(t)
+ �̄(w, t)

n(t, d = i)

n(t) + �̄(t)
+

n(t, w = wij) [n(t, d = i) + ↵t]

n(t) + �̄(t)

topic dependent, dense

X

t

�(w, t)
↵t

n(t) + �̄(t)
 k�(w, ·)k

����
↵·

n(·) + �̄(·)

����

Collapsed vs Variational
• Memory requirements (1k topics, 2M words)

• Variational inference: 8GB RAM (no sparsity)
• Collapsed sampler: 1.5GB RAM (rare words)

• Burn-in & sparsity exploit saves a lot

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900 1000

Sp
ee

d-
up

 o
ve

r s
ta

nd
ar

d
sa

m
pl

er

Iteration

Sampling Speed-up (1000 topics)

doc doc,wordunif

•Cauchy Schwartz bound
•multilingual LDA
•word context
•smoothing over time

Fast Proposal

• In reality sparsity
often not true for
real proposal

• Guess sparse proxy

• In the storylines
model this are the
entities

• Variations on a themeinference for mixtures• Parallel inferenceparallelization templates• Samplers
scaling up LDA

