
Templates
for scalable data analysis

1 Introduction to Big Learning

Amr Ahmed, Alexander J Smola, Markus Weimer
Yahoo! Research & UC Berkeley & ANU

Joey
Gonzalez

Yucheng
Low

Qirong
Ho

Shravan
Narayanamurthy

Vanja
Josifovski

Choon Hui
Teo

Eric
Xing

James
Petterson

Jake
Eisenstein

Shuang Hong
Yang

Vishy
Vishwanathan

Markus
Weimer

Amr
Ahmed

Mohamed
Aly

Sergiy
Matyusevich

Thanks

• Problems in machine learning• Systems
to run the algorithms• Response

batch/online/interactive• Compression

some
Problemsin machine learning

1

Classification

Classifier ClassifierClassifier Classifier

Spam Filtering

1: donut?
0: not-
spam!1: spam! ?

maliciouseducated misinformed confused silent

0: quality

Classifier ClassifierClassifier Classifier

Spam Filtering

Classifier

maliciouseducated misinformed confused silent

Classifier ClassifierClassifier Classifier

Spam Filtering

Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
Classifier

Personalized Spam Filtering

• Function representation

(corresponds to multitask kernel of Pontil & Michelli, Daume)

• Reduce to binary classification problem and classify with

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

Personalized Spam Filtering

xmailm

wuserm
w

sgn f(x, u)

• Function representation

(corresponds to multitask kernel of Pontil & Michelli, Daume)

• Reduce to binary classification problem and classify with

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

Personalized Spam Filtering

xmailm

wuserm
w

xmail ⌦ (1� euser)

(w, euser ⌦ wuser)

sgn f(x, u)

• 100-1000 million users
• 10-1000 messages per user
• Distributed storage and processing
• Real-time response required
• Implicit response

Personalized Spam Filtering

minimize

w

mX

i=1

max(0, 1� y hw, xi) + �

2

kwk2

Ontologies
• 10k to 1M categories
• Few instances per

category
• Hierarchical structure

(top level more
important than leaf)

• Category selection
arbitrary

• Low entropy on leaves
• Often several

ontologies in use

Ontologies
• 10k to 1M categories
• Few instances per

category
• Hierarchical structure

(top level more
important than leaf)

• Category selection
arbitrary

• Low entropy on leaves
• Often several

ontologies in use

Gene Ontology DAG

Ontologies
• 1000s of categories
• High error rate (impossible to learn them all)
• Structured loss

(count common top level categories)
• Good strategy is additive function class

Need efficient decoding on tree
• Alternative - obtain ontology automatically

f(x, y) =
X

y02path(y)

hwy0
, xi

Clustering

Clustering

Clustering

Clustering

Clustering

airline

restaurant

university

Generative Model

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...
objects

cluster ID

Generative Model

y1

x1

y2

xi

y3

xi

ym

xm

Θ

...

μk,
Σk

yi

xi

Θ

μj,Σj

i=1..m

yi

xi

Θ

i=1..m

α

β

j=1..k

μ1,
Σ1 μj,Σj

j=1..k

...

p(X,Y |✓,�, µ) =
nY

i=1

p(xi|yi, �, µ)p(yi|✓)

objects

cluster ID

What can we cluster?

What can we cluster?

text
news users

mails

queries

urls

ads

products

events
locations

spammers

abuse

Topic Models

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003

Grouping objects

Grouping objects

Singapore

Grouping objects

Grouping objects

Grouping objects

airline

restaurant

university

Grouping objects

Australia

Singapore

USA

Topic Models

USA
airline

Singapore
airline

Singapore
food

USA
food

Singapore
university

Australia
university

Clustering & Topic Models
Clustering Topics

?

group objects
by prototypes

decompose objects
into prototypes

Clustering & Topic Models
Clustering Topics

?

group objects
by prototypes

decompose objects
into prototypes

Clustering & Topic Models

x

y

θ

prior

cluster
probability

cluster
label

instance x

y

θ

prior

topic
probability

topic label

instance

clustering Latent Dirichlet Allocation

α α

Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices

Many more
• Regression

inventory, traffic, reserve price, elasticity
• Novelty detection

abuse, change in traffic, server farm
• Entity tagging

keywords, named entities, segmentation
• Collaborative filtering

recommend related movies, books, songs
• Inferring structure from data

trees, DAGs, segmentation boundaries, user models

Optimization & inference problems
(horrible oversimplification)

• Supervised problems

• convex problem
• solve subproblem and merge works well

• Unsupervised problems
• nonconvex problem (looks similar)
• fast synchronization required

minimize
w

mX

i=1

l(xi, yi, w) + � kwk↵

goodness of fit complexity penalty

Systemsto run our algorithms on

2

• NOT High Performance Computing

• Consumer hardware
Cheap, efficient, not very reliable

Hardware

Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

CPU

• 8-32 cores
• Memory interface

20-60GB/s
• Internal bandwidth

>100GB/s
• >100 GFlops for matrix

matrix multiply
• Integrated low end GPU

RAM
• High latency (100ns for DDR3)
• High burst data rate (>10 GB/s)

• Avoid random access in code if possible.
• Memory align variables
• Know your platform (FBDIMM vs. DDR)

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask
http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask

GPU

• Up to 512 cores / 200W
• Tricky to synchronize threads
• 1-3GB memory (Tesla 6GB)
• 1 TFlop
• Memory bandwidth > 100GB/s
• 4GB/s PCI bus bottleneck

Storage

• Harddisks
• 3TB of storage (30MB/$)
• 100 MB/s bandwidth (sequential)
• 5 ms seek (200 IOPS)

• SSD
• 100-500 MB storage (1MB/$)
• 300 MB/s bandwidth (sequential)
• 50,000 IOPS / 1 ms seek (queueing)

Switches & Colos
• Big switches are expensive
• Switches have finite buffers

• many connections to single
machine

• dropped packets / collisions
• Hierarchical structure

• more bandwidth within rack
• lower latency within rack
• lots of latency between colos

...

recent development on ‘flat’ networks

Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

Distribution and Balancing

Concepts

• Large number of objects (a priori unknown)
• Large pool of machines (often faulty)
• Assign objects to machines such that

• Object goes to the same machine (if possible)
• Machines can be added/fail dynamically

• Consistent hashing (elements, sets, proportional)

symmetric (no master), dynamically scalable, fault tolerant

Hash function
• Mapping from domain X to integer range [1..N]
• Indistinguishable from uniform distribution
• n-ways independent hash function

• Draw h from set hash functions H at random
• For n instances in X their hash [h(x1), ... h(xn)] is essentially

indistinguishable from n random draws from [1 ... N]
• For many cases we only need 2-ways independence

• In practice use MD5 or Murmur Hash for high quality
https://code.google.com/p/smhasher/

for all x, y Pr

y2H
{h(x) = h(y)} =

1

N

X

https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/

Argmin Hash
• Consistent hashing

• Uniform distribution over machine pool M
• Fully determined by hash function h. No need to ask master
• If we add/remove machine m’ all but O(1/m) keys remain

• Consistent hashing with k replications

• If we add/remove a machine only O(k/m) need reassigning
• Cost to assign is O(m). This can be expensive for 1000 servers

m(key) = argmin
m2M

h(key,m)

Pr {m(key) = m0} =
1

m

m(key, k) = k smallest
m2M

h(key,m)

Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k

leftmost machines (skip duplicates)

ring of N keys

D2 - Distributed Hash Table
• For arbitrary node segment size is

minimum over (m-1) independent
uniformly distributed random variables

• Density is given by derivative

• Expected segment length is
(follows from symmetry)

• Probability of exceeding expected
segment length (for large m)

ring of N keys

Pr {x � c} =
mY

i=2

Pr {si � c} = (1� c)m�1

p(c) = (m� 1)(1� c)m�2

c =
1

m

Pr

⇢
x � k

m

�
=

✓
1� k

m

◆m�1

�! e

�k

Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4

Random Caching Trees
(Karger et al. 1999, Akamai paper)

• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

Random Caching Trees
• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

e.g. memcached

More stuff
• Map reduce (e.g. Hadoop)
• Online streaming (e.g. S4, Dryad, Storm)
• NoSQL Database (e.g. pnuts, bigtable)
• Fault tolerant (key,value) storage (e.g. dynamo)
• Smart file system layout (e.g. ceph, GFS2)

Interactionwith the environment

3

Batch
• Data generated independently

• Editors label data
• Recorded log files

• Learning algorithm
• Often invoked from scratch
• No influence on data source

• Deployment
• No direct influence on learning
• Ignores influence on source

data source inference
& learning

deployment

Online
• Data generated independently

• Editors label data
• Incoming log files

• Learning algorithm
• Update happens in (near) realtime
• Adapts to changing data source (good for spam, attacks, news)

• Deployment
• No direct influence on learning
• Ignores influence on source

data source inference
& learning

deploymentnow

Interactive / Explore & Exploit

data source inference
& learning

deploymentnow E&E

• Data is response to current model
• Story recommendations
• Personalized news ranking

• Learning algorithm
• Update happens in (near) realtime
• Adapts to changing data source

• Deployment
• Predictive uncertainty influences exploration
• Value of information & current payoff

• Problems in machine learning• Systems
to run the algorithms• Response

batch/online/interactive• Compression

Compressionhashing for limited memory

4

Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
Classifier

Personalized Spam Classification

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 106 x 108. That is 400TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Personalized Spam Classification

xmailm

wuserm
w

• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 106 x 108. That is 400TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u�]

Personalized Spam Classification

xmailm

wuserm
w

xmail ⌦ (1� euser)

(w, euser ⌦ wuser)

Hash Kernels

Hey,

please mention
subtly during your
talk that people
should use Yahoo
products more
often.
Thanks,

Someone important

instance: dictionary:

1

2

1

1

task/user
(=barney):

sparse

Hash Kernels

Hey,

please mention
subtly during your
talk that people
should use Yahoo
products more
often.
Thanks,

Someone important

instance: dictionary:

1

2

1

1

task/user
(=barney):

sparse

1

3

2
1

Rm

hash
function:

h()

sparse

Hash Kernels

Hey,

please mention
subtly during your
talk that people
should use Yahoo
products more
often.
Thanks,

Someone important

instance:

task/user
= barney

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

Similar to count sketch
(Charikar, Chen, Farrach-Colton, 2003)

�(mention barney) 2 {±1}

�(mention)

Hash Kernels
sparsity preserving, dictionary free

Hash Kernels
• Function evaluation

• Kernel

f(x) =
X

i

wixi + b

fhash(x) =
X

i

�(i)w[h(i)]xi + b

k(x, x0) =
X

i

xix
0
i

khash(x, x
0) =

nX

j=1

2

4
X

i:h(i)=j

xi�(i)

3

5

2

4
X

i:h(i)=j

x

0
i�(i)

3

5

collisions

Rsmall

We can do multi-task learning!

�()
h()

Rlarge
Rsmall

Direct sum in
Hilbert Space

Sum in
Hash Space

Approximate Orthogonality

Spam classification results
!"#$%

!"#&% !"##% !"##% !%

!"!'%

#"$'%

#"(#%

#")$% #")(%

#"##%

#"'#%

#"*#%

#")#%

#"$#%

!"##%

!"'#%

!$% '#% ''% '*% ')%

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

+,-./,01/2134%

5362-7/,8934%

./23,873%

N=20M, U=400K

Lazy users ...

1 

10 

100 

1000 

10000 

100000 

1000000 

0
 

1
3
 

2
6
 

3
9
 

5
2
 

6
5
 

7
8
 

9
1
 

1
0
4
 

1
1
7
 

1
3
0
 

1
4
3
 

1
5
6
 

1
6
9
 

1
8
2
 

1
9
7
 

2
1
1
 

2
2
8
 

2
4
4
 

2
6
1
 

2
8
8
 

3
1
7
 

3
7
0
 

5
2
3
 

n
u
m
b
e
r 
o
f 
u
se
rs
 

number of labels 

Labeled emails per user 

Results by user group

Results by user group

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

labeled emails:

Results by user group

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

labeled emails:

Even more
• Fast graph comparison

• Extract subgraph signatures
• Avoiding to implement dynamic data structures

• Ontologies (hash ontology path labels)
• Hierarchical factorization (hash context)
• Content personalization (hash source, user, context)

• Collaborative filtering
• Compress many users into common parameter vector

• String comparison (kernels)
• Generate sequence with mismatches, hash and weight

e.g. dog becomes {(dog,1), (*og, 0.5), (d*g, 0.5), (do*, 0.5)}

• Replace w[complicated key] by w[h(complicated key)]

