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• Problems in machine learning• Systems
to run the algorithms• Response

batch/online/interactive• Compression



some
Problemsin machine learning
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Personalized Spam Filtering



• Function representation

(corresponds to multitask kernel of Pontil & Michelli, Daume)

• Reduce to binary classification problem and classify with

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

Personalized Spam Filtering

xmailm

wuserm
w

sgn f(x, u)
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• 100-1000 million users
• 10-1000 messages per user
• Distributed storage and processing
• Real-time response required
• Implicit response

Personalized Spam Filtering

minimize

w

mX

i=1

max(0, 1� y hw, xi) + �
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Ontologies
• 10k to 1M categories
• Few instances per 

category
• Hierarchical structure 

(top level more 
important than leaf)

• Category selection 
arbitrary

• Low entropy on leaves
• Often several 

ontologies in use
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Gene Ontology DAG



Ontologies
• 1000s of categories
• High error rate (impossible to learn them all)
• Structured loss

(count common top level categories)
• Good strategy is additive function class

Need efficient decoding on tree
• Alternative - obtain ontology automatically

f(x, y) =
X

y02path(y)

hwy0
, xi
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What can we cluster?



What can we cluster?

text
news users

mails

queries

urls

ads

products

events
locations

spammers

abuse



Topic Models

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003



Grouping objects



Grouping objects
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Grouping objects
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Topic Models
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Clustering & Topic Models
Clustering Topics

?

group objects
by prototypes

decompose objects
into prototypes
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Clustering & Topic Models
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Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices



Many more
• Regression

inventory, traffic, reserve price, elasticity
• Novelty detection

abuse, change in traffic, server farm
• Entity tagging

keywords, named entities, segmentation
• Collaborative filtering

recommend related movies, books, songs
• Inferring structure from data

trees, DAGs, segmentation boundaries, user models



Optimization & inference problems
(horrible oversimplification)

• Supervised problems

• convex problem
• solve subproblem and merge works well

• Unsupervised problems
• nonconvex problem (looks similar)
• fast synchronization required

minimize
w

mX

i=1

l(xi, yi, w) + � kwk↵

goodness of fit complexity penalty



Systemsto run our algorithms on
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• NOT High Performance Computing

• Consumer hardware
Cheap, efficient, not very reliable

Hardware



Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf


CPU

• 8-32 cores
• Memory interface 

20-60GB/s
• Internal bandwidth 

>100GB/s
• >100 GFlops for matrix 

matrix multiply
• Integrated low end GPU



RAM
• High latency (100ns for DDR3)
• High burst data rate (>10 GB/s)

• Avoid random access in code if possible. 
• Memory align variables
• Know your platform (FBDIMM vs. DDR)

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask
http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask


GPU

• Up to 512 cores / 200W
• Tricky to synchronize threads
• 1-3GB memory (Tesla 6GB) 
• 1 TFlop
• Memory bandwidth > 100GB/s
• 4GB/s PCI bus bottleneck



Storage

• Harddisks
• 3TB of storage (30MB/$)
• 100 MB/s bandwidth (sequential)
• 5 ms seek (200 IOPS)

• SSD
• 100-500 MB storage (1MB/$)
• 300 MB/s bandwidth (sequential)
• 50,000 IOPS / 1 ms seek (queueing)



Switches & Colos
• Big switches are expensive 
• Switches have finite buffers

• many connections to single 
machine 

• dropped packets / collisions
• Hierarchical structure

• more bandwidth within rack
• lower latency within rack
• lots of latency between colos

...

recent development on ‘flat’ networks



Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf


Distribution and Balancing



Concepts

• Large number of objects (a priori unknown)
• Large pool of machines (often faulty)
• Assign objects to machines such that

• Object goes to the same machine (if possible)
• Machines can be added/fail dynamically 

• Consistent hashing (elements, sets, proportional)

symmetric (no master), dynamically scalable, fault tolerant



Hash function
• Mapping from domain X to integer range [1..N]
• Indistinguishable from uniform distribution
• n-ways independent hash function

• Draw h from set hash functions H at random
• For n instances in X their hash [h(x1), ... h(xn)] is essentially 

indistinguishable from n random draws from [1 ... N]
• For many cases we only need 2-ways independence

• In practice use MD5 or Murmur Hash for high quality
https://code.google.com/p/smhasher/

for all x, y Pr

y2H
{h(x) = h(y)} =

1

N

X

https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/


Argmin Hash
• Consistent hashing

• Uniform distribution over machine pool M
• Fully determined by hash function h. No need to ask master
• If we add/remove machine m’ all but O(1/m) keys remain

• Consistent hashing with k replications

• If we add/remove a machine only O(k/m) need reassigning
• Cost to assign is O(m). This can be expensive for 1000 servers

m(key) = argmin
m2M

h(key,m)

Pr {m(key) = m0} =
1

m

m(key, k) = k smallest
m2M

h(key,m)



Distributed Hash Table
• Fixing the O(m) lookup

• Assign machines to ring via hash h(m)
• Assign keys to ring
• Pick machine nearest to key to the left

• O(log m) lookup
• Insert/removal only affects neighbor

(however, big problem for neighbor)
• Uneven load distribution

(load depends on segment size)
• Insert machine more than once to fix this
• For k term replication, simply pick the k 

leftmost machines (skip duplicates)

ring of N keys
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D2 - Distributed Hash Table
• For arbitrary node segment size is 

minimum over (m-1) independent 
uniformly distributed random variables

• Density is given by derivative

• Expected segment length is  
(follows from symmetry)

• Probability of exceeding expected 
segment length (for large m)

ring of N keys

Pr {x � c} =
mY

i=2

Pr {si � c} = (1� c)m�1

p(c) = (m� 1)(1� c)m�2

c =
1

m

Pr

⇢
x � k

m

�
=

✓
1� k

m

◆m�1

�! e

�k



Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional 
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4



Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional 
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4



Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional 
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4



Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional 
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4



Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional 
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4



Proportional Allocation Table
• Assign items according to machine capacity

• Create allocation table with segments proportional 
to capacity

• Leave space for additional machines
• Hash key h(x) and pick machine covering it
• If failure, re-hash the hash until it hits a bin
• For replication hit k bins in a row

• Proportional load distribution
• Limited scalability
• Need to distribute and update table
• Limit peak load by further delegation

(SPOCA - Chawla et al., USENIX 2011)

1

2

3

4



Random Caching Trees
(Karger et al. 1999, Akamai paper)

• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering



Random Caching Trees
• Cache / synchronize an object
• Uneven load distribution
• Must not generate hotspot

• For given key, pick random order of machines
• Map order onto tree / star via BFS ordering

e.g. memcached



More stuff
• Map reduce (e.g. Hadoop)
• Online streaming (e.g. S4, Dryad, Storm)
• NoSQL Database (e.g. pnuts, bigtable)
• Fault tolerant (key,value) storage (e.g. dynamo)
• Smart file system layout (e.g. ceph, GFS2)



Interactionwith the environment

3



Batch
• Data generated independently

• Editors label data
• Recorded log files

• Learning algorithm 
• Often invoked from scratch
• No influence on data source

• Deployment
• No direct influence on learning
• Ignores influence on source

data source inference
& learning

deployment



Online
• Data generated independently

• Editors label data
• Incoming log files

• Learning algorithm 
• Update happens in (near) realtime
• Adapts to changing data source (good for spam, attacks, news)

• Deployment
• No direct influence on learning
• Ignores influence on source

data source inference
& learning

deploymentnow



Interactive / Explore & Exploit

data source inference
& learning

deploymentnow E&E

• Data is response to current model
• Story recommendations
• Personalized news ranking

• Learning algorithm 
• Update happens in (near) realtime
• Adapts to changing data source

• Deployment
• Predictive uncertainty influences exploration
• Value of information & current payoff



• Problems in machine learning• Systems
to run the algorithms• Response

batch/online/interactive• Compression



Compressionhashing for limited memory

4



Classifier Classifier Classifier Classifier Classifier

maliciouseducated misinformed confused silent

Global
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Personalized Spam Classification



• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 106 x 108. That is 400TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅

k((x, u), (x�, u�)) = k(x, x�)[1 + �u,u� ]

Personalized Spam Classification

xmailm

wuserm
w



• Primal representation

Kernel representation

Multitask kernel (e.g. Pontil & Michelli, Daume). Usually does not scale well ...
• Problem - dimensionality is 106 x 108. That is 400TB of space

f(x, u) = ⇤�(x), w⌅+ ⇤�(x), wu⌅ = ⇤�(x)⇥ (1� eu), w⌅
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xmailm
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xmail ⌦ (1� euser)

(w, euser ⌦ wuser)



Hash Kernels
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Hey,

please mention 
subtly during your 
talk that people 
should use Yahoo 
products more 
often. 
Thanks,  

Someone important

instance:

task/user
= barney

⇥xi � RN�(U+1)

1

3

2
-1

h()

h(‘mention’)

h(‘mention_barney’)

Similar to count sketch
(Charikar, Chen, Farrach-Colton, 2003)

�(mention barney) 2 {±1}

�(mention)

Hash Kernels
sparsity preserving, dictionary free



Hash Kernels
• Function evaluation

• Kernel

f(x) =
X

i

wixi + b

fhash(x) =
X

i

�(i)w[h(i)]xi + b

k(x, x0) =
X

i

xix
0
i

khash(x, x
0) =

nX

j=1

2

4
X

i:h(i)=j

xi�(i)

3

5

2

4
X

i:h(i)=j

x

0
i�(i)

3

5
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Rsmall

We can do multi-task learning!

�()
h()

Rlarge
Rsmall

Direct sum in 
Hilbert Space

Sum in 
Hash Space

Approximate Orthogonality



Spam classification results
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Lazy users ...
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Results by user group



Results by user group
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Even more
• Fast graph comparison

• Extract subgraph signatures
• Avoiding to implement dynamic data structures

• Ontologies (hash ontology path labels)
• Hierarchical factorization (hash context)
• Content personalization (hash source, user, context)

• Collaborative filtering
• Compress many users into common parameter vector

• String comparison (kernels)
• Generate sequence with mismatches, hash and weight

e.g. dog becomes {(dog,1), (*og, 0.5), (d*g, 0.5), (do*, 0.5)}

• Replace w[complicated key] by w[h(complicated key)]


