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ABSTRACT
Scalable data analysis has come a long way since the intro-
duction of the MapReduce paradigm a decade ago. In this
tutorial we present algorithms for synchronous and asyn-
chronous data processing. They are are capable of dealing
with the amounts of data typically available on the internet.

We given a brief description of the problems one faces
when performing scalable machine learning on the inter-
net. To motivate matters we provide a number of scenarios
from spam filtering, advertising and collaborative filtering.
This is followed by an extensive discussion of current and
novel synchronous data processing techniques. In particu-
lar we emphasize how insights from systems research and
databases can be used to achieve significant improvements
both in terms of expressiveness and in terms of efficiency of
the deployed algorithms.

This is followed by a description of asynchronous data
analysis and inference methods. The latter are particularly
necessary whenever the estimation problem requires the use
of a significant number of latent variables. This includes
cases such as clustering, topic models, or graph factoriza-
tion. We provide an ample number of motivating examples
and applications, ranging from user profiling to the analysis
of communication networks. Special emphasis is placed on
approximations needed to scale algorithms to hundreds of
millions of users and billions of documents.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Monte Carlo methods; I.2.11 [Computing Method-
ologies]: Artificial Intelligence—Distributed Artificial Intel-
ligence; I.2.6 [Computing Methodologies]: Artificial In-
telligence—Learning

General Terms
Supervised Learning, MapReduce, Bulk Synchronous Pro-
cessing, Graphical models, Asynchronous Inference, Distributed
Optimization

Keywords
Sampling, latent variables, topic models, clustering, sys-
tems, databases, scalable data analysis
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1. LARGE SCALE MACHINE LEARNING
Machine Learning is rapidly becoming a key enabling tool

for intelligent services on the internet. This ranges from
adaptive search algorithms to computational advertising, to
the analysis of large amounts of news content, recommenda-
tions, collaborative filtering, and user modeling at the scale
of large social networks. The opportunities are tremendous
since targeted high quality content significantly improves the
quality of a service, such as mail, news, advertising, search,
or the management of user generated content.

A large and important family of problems arising in this
context are those of supervised learning. That is, classifica-
tion, categorization, tagging, the extraction of named enti-
ties, supply forecasting, or the detection of unusual events.
A commonality of these problems is that they result in con-
vex optimization problems which are amenable to iterative
methods. We present online and batch templates for solving
these problems.

2. SYNCHRONIZED TEMPLATES
Systems such as MapReduce led to a proliferation of big

data sets across the industry. Hadoop and applications built
on top of it like Pig, Hive and Cascading are at the core of
the derivation of value from those large data sets. At the
same time, Machine Learning is increasingly becoming a key
technology in unlocking the value of the recorded data. This
makes big data platforms such as Hadoop a desirable target
environment for machine learning, as many uses of the data
(statistical analysis, explorative analysis, feature extraction
and ultimately machine learning) can be collocated in the
same infrastructure.

Level 1 — Hadoop, Pig, Hive. Executing machine
learning algorithms on top of e.g. Hadoop is enabled through
their very structure: In many cases, machine learning al-
gorithms can be cast using statistical queries (means, loss
function values, etc.) as their core computational primi-
tive. Those queries themselves decompose per example in
the training data set. This makes MapReduce an attractive
programming model for these statistical queries. One sim-
ple example are gradient descent algorithms: The gradient of
the loss function is the sum of the gradients of the loss func-
tion over all data points. This, in turn, lends itself to use
the map step of MapReduce to compute the per-datapoint
gradient and the reduce step to sum those up.

Level 2 — Algorithm specific solutions. The MapRe-
duce programming model does not account for the second
defining attribute of nearly all machine learning algorithms:
They are iterative, while e.g. Hadoop is optimized for jobs
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Figure 1: Scaling behavior for distributed latent
variable inference. We increase the amount of data
linearly with the number of processors (blue curve).
The red curve shows that our algorithm scales lin-
early in the amount of data when the computational
resources are fixed.

that consist of a single MapReduce job. This mismatch in
optimization goals has significant ramifications in terms of
the efficiency of machine learning on top of Hadoop and
forced successful machine learning systems like Vowpal Wab-
bit to forfeit the productivity benefits of a distributed run-
time environment in favor of a more low-level implementa-
tion in order to be effective.

Level 3 — Systems level support in Spark and
Pregel. More recently, this iteration weakness of MapRe-
duce has been adressed in a more systematic way by Graphlab,
Pregel and Spark. The latter allows the programmer to ex-
plicitly optimize for iterative algorithms through caching.
The former two add the notion of graph computations as a
first class citizen to distributed computing. However, they
do not support the complete large scale machine learning
pipeline including feature extraction and data cleansing. Ad-
ditionally, they do not isolate the programmer completely
from runtime considerations. This is especially troubling
on shared clusters / clouds where the physical environment
changes all the time.

Level 4 — Hyracks, Scalops Most recently, this prob-
lem has been adressed by declarative approaches like Scalops
which include iteration and graph computation as a first
class citizen at the declarative layer. This enables the kind
of distributed computing “magic” for this class of algorithms
that made MapReduce a sucess in its respective application
domain.

3. ASYNCHRONOUS TEMPLATES
Unfortunately many inference problems are addressed much

more efficiently by asynchronous distributed updates. A
common attribute of such problems is that they exhibit mul-
timodality, e.g. in latent variable models where there are
several locally optimal assignments and partitions. In this
case algorithms which have significant delay between syn-
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Figure 2: Speed of convergence for synchronous and
asynchronous inference when factorizing a graph of
200 million vertices. The asynchronous algorithm is
approximately one order of magnitude faster than
its synchronous counterpart.

chronization of the computers involved exhibit considerably
worse speed of convergence. It is this very aspect that asyn-
chronous inference templates address (see Figures 1 and 2
for examples of the quality and speed of convergence).

Distributed Variable Storage and Synchronization
A key issue in large scale latent variable models is the fact
that the number of variables considerably exceeds the amount
of memory available on individual machines. We describe a
mechanism based on consistent hashing that ensures that
we obtain even load balancing over many machines without
expensive distribution and planning. The algorithm works
by creating centralized copies of random variables and syn-
chronizing them with machine-local instances in a protocol
very much akin to message passing.

Method of Multipliers Whenever latency of synchro-
nization becomes a significant contributor to model qual-
ity we resort to Bertsekas’ method of multipliers. That is,
we relax the original estimation problem by adding consen-
sus copies as separate variables with Lagrange multipliers to
the estimation problem. These variables are updated asyn-
chronously in parallel to the original state variables.

4. APPLICATIONS
We provide three examples of how the above algorithms

can be used in a large scale setting: Firstly, we describe time-
dependent topic models for user profiling at enterprise level.
Secondly, we describe a large scale clustering algorithm, and
finally, we give details on factorizing a real-world messaging
and communication graph.

Target Audience
The primary audience are researchers in industry and academia
who are interested in learning about scalable data analysis
frameworks. We assume that the audience have some prior
knowledge of statistics and probability theory (we assume fa-
miliarity with Bayes rule). Some basic notions of large scale
computation such as MapReduce are useful but not required.
In some cases we assume that the readers be familiar with
belief propagation and message passing in graphical models
(a brief introduction will be provided to keep the tutorial
self-contained).
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