
HTML5 tutorial
Michel Buffa

Wimmics Group, I3S laboratory/INRIA,

University of Nice, France.

buffa@i3s.unice.fr

+33492965103

buffa@i3s.unice.fr

ABSTRACT

This HTML5 tutorial is available at: http://tinyurl.com/77z3t7j

Note about the author: Michel Buffa teaches web technologies at

the University of Nice, France, since 1994. He started a HTML5

course last year for master students in computer science
1
. Michel

Buffa belongs to the Wimmics research group from I3S/CNRS and

INRIA. He is co-author of the semantic wiki SweetWiki and co-

supervised recently two PhDs on semantic social network analysis

and on semantic enrichment of folksonomies. He also supervises

students that use HTML5 at the heart of the software they develop

during their PhD, including a JavaScript semantic wiki that uses web

sockets and a HTML5 WYSIWYG editor.

The tutorial consists in a presentation (HTML5 slides that include

many interactive applications) and lab exercises. Both are

downloadable from the tutorial web page. The presentation

illustrates the main characteristics of HTML5 and focus on some

APIs that have been recently implemented by browsers, such as the

new getUserMedia API for real time audio and video streaming.

The HTML5 slides cover the following HTML5 tags and APIs:

forms, geolocation, File and drag’n’drop APIs, canvas, audio and

video tags, getUserMedia API for real time streaming, the sound

audio API for real time sound processing and sound synthesis, and

the web sockets API for bidirectional, real time communication.

Each topic is illustrated by several demonstrations (tiny applications

embedded in the slides, with interactive features), most of them

developed especially for this tutorial by the author and his students

from the University of Nice. All examples came with source code,

either available online in the JSbin.com IDE (Figure 1) or as

downloadable archives. They include many small code snippets

sorted by topic, as well as full featured applications such as a

multiplayer arcade game that uses physic simulation or a paint

program involving several participants in real time as well as the

getUserMedia API for painting with the images coming from the

web cam video stream (Figure 2).

1
 See the HTML5 part of this page

http://miageprojet2.unice.fr/Intranet_de_Michel_Buffa/Option_we

b_2.0_Master_1_informatique_2011

The labs exercises are divided in two paths:

1. A “discovery path” composed of around fifty small

examples sorted by category (forms, drag’n’drop, canvas,

video, web sockets, etc.) Nearly each example is hosted

by the JSbin.com online IDE and can be tweaked in real

time, facilitating the understanding of the code.

2. A “geek path” that proposes to write step by step a paint

program for several participants at the same time, using

web sockets. This path involves the installation of the

NodeJS web server as well as the installation of some

additional modules for NodeJS, for enabling web sockets

or JavaScript distributed objects over web sockets. Step 1

starts with a simple paint program that draws when the

mouse moves, Step 2 adds the management of more

mouse events, Step 3 shows an interesting use of

canvases: they can be layered one on top of another.

Using relative positioning and the CSS z-index property

with different values, they can act as layers in Photoshop.

By default canvases are transparent so we can see

through them. This step shows how to draw “elastic

lines”. Step 4, 5 and 6 add different functionalities like

drawing in color, drawing different shapes, etc. while

Steps 7 and 8 introduce the use of web sockets in order to

add collaborative features to the application. Step 7 shows

how to write a small chat application using NodeJS and

web sockets and include it in the paint program. Step 8

extends the chat in order to transfer paint events from

one client to the web socket server, which in turn

broadcasts them to other clients. The getUserMedia

API is also used in that step so that one can paint with the

live picture coming from the web cam (in sync with other

participants).

http://tinyurl.com/77z3t7j

Figure 1: a small example in the JSbin.com online IDE that shows how to use the HTML5 getUserMedia API for real time video

streaming. Users can tweak the code and see in real time the results.

Figure 2: a multi participant paint program that uses web sockets and the getUsermedia API for real time video streaming from

the webcam. It includes a chat (bottom) and uses the NodeJS server as well as some additional modules for sharing objects

between client code and server code.

