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ABSTRACT
Research on social network analysis has been actively pursued.
In social network analysis, individuals are represented as nodes
in a graph and social ties among them are represented as links,
and the graph is therefore analyzed to provide an understanding
of complex social phenomena that involve interactions among a
large number of people. However, graphs used for social network
analyses generally contain several errors since it is not easy to ac-
curately and completely identify individuals in a society or social
ties among them. For instance, unweighted graphs or graphs with
quantized link weights are used for conventional social network
analyses since the existence and strengths of social ties are gener-
ally known from the results of questionnaires. In this paper, we
study, through simulations of graphs used for social network anal-
yses, the effects of link weight quantization on the conventional
centrality measures (degree, betweenness, closeness, and eigenvec-
tor centralities). Consequently, we show that (1) the effect of link
weight quantization on the centrality measures are not significant
to infer the most important node in the graph, (2) conversely, 5–
8 quantization levels are necessary for determining both the most
central node and broad-range node rankings, and (3) graphs with
high skewness of their degree distribution and/or with high corre-
lation between node degree and link weights are robust against link
weight quantization.
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1. INTRODUCTION
Research on social network analysis has been actively pursued [5,

23]. In social network analysis, individuals are represented as nodes
in a graph and social ties among them, such as similarities, social
relations, interactions, and flows, are represented as links [5, 23].
The strength of the social ties can be expressed as link weights.
The resulting graph is then analyzed to provide an understanding of
complex social phenomena that involve interactions among a large
number of people.

Among the various indices proposed for social network analy-
sis, centrality measures for the nodes in a graph (degree centrality,
betweenness centrality, closeness centrality, and eigenvector cen-
trality) [3,11] have been widely used in actual analyses [2,4]. Cen-
trality measures are indices that express the influence of one node
on others, and have been used for several purposes, such as discov-
ering a person who plays a central role in a community [2, 4], or
inferring activity and leadership levels in a community [13, 20].

However, the graphs used for social network analyses gener-
ally contain several errors since it is not easy to accurately and
completely identify individuals in a society or social ties among
them [6, 8, 14, 16, 17]. For instance, unweighted graphs [2, 8] or
graphs with quantized link weights [9] are used for conventional
social network analyses since the existence and strengths of social



ties are generally known from the results of questionnaires given to
the participants in the experiments. In many social network analy-
ses [2,8,21], only the existence of a social tie is used and its strength
is ignored. Even in social network analyses where the strength of
a social tie is expressed as a link weight, the link weight may be
quantized to take only a few discrete values [9, 10].

Several analyses on the robustness of centrality measures used
for social network analyses against the imperfections of graphs
(i.e., noise due to random addition and deletion of nodes and links)
have been performed [6, 8, 14, 16, 17]. However, since unweighted
graphs are used for the analyses in those studies, the effects of ig-
noring link weight and link weight quantization on centrality mea-
sures have not been explored.

In this paper, we study, through simulations of graphs used for
social network analyses, the effects of link weight quantization on
the conventional centrality measures (degree, betweenness, close-
ness, and eigenvector centralities).

The remainder of this paper is organized as follows. In Section 2,
the experimental methods are explained. In Section 3, we present
the experimental results, and discuss the effects of ignoring link
weight and link weight quantization on the centrality measures. Fi-
nally, Section 4 contains our conclusions and a discussion of future
work.

2. METHODOLOGY
We investigate how centrality measures of nodes differ between

a weighted undirected graph G and a weighted undirected graph
Gn, in which link weights are quantized to take n values.

We randomly generate a weighted undirected graph G by using
three network generation models. Since there are several defini-
tions of links (i.e., social ties among individuals) in social network
analyses, the topological structures of the graphs used for the anal-
yses are also different from each other. In this paper, we use the
following three network generation models to generate graphs with
different structural characteristics.

• Community Emergence (CE) model [15]

The CE model is a network generation model that models
the formation of community structure in a social network. A
weighted undirected graph generated by the CE model con-
sists of clusters of nodes, which are densely connected to
each other by links with large weights. Between the clusters
are a small number of links with small weights.

• Weighted Evolution (WE) model [1]

The WE model is a network generation model that models
the evolution of link weights and the topology created by the
existing link weights. A weighted undirected graph gener-
ated by the WE model has the feature that the distributions
of node degree and link weights follow power laws.

• WECS (Weighted Evolving with Community Structure) model
[18]

The WECS model is a network generation model that models
formation of community structure in a social network by the
evolution of link weights and the formation of the topology
depending on the existing link weights. A weighted undi-
rected graph generated by WECS model has a cluster struc-
ture, a power-law distribution of node degree, and a power-
law distribution of link weights.

For comparison purposes, we also use the weighted undirected
graph that is an Erdös - Rényi (ER) graph with link weights ran-
domly assigned according to the Pareto distribution. In what fol-
lows, we call the model for generating this graph the “Random
graph with Random link weight” (RR) model.

We use two methods for link weight quantization: linear and
logarithmic quantization. In linear quantization we divide the range
of link weights into n equal sections, and assign an integer between
1 and n to each section. The integer k associated with a weight w
is then given by

k = dn × w
wmax

e, (1)

where wmax is the maximum link weight in graph G. In logarith-
mic quantization we divide the range of link weights into n equal
sections after a logarithmic transformation, and assign an integer
between 1 and n to each section. The possible link weights in graph
Gn are

w
i
n
max, (2)

for 1 ≤ i ≤ n and the integer k associated with weight w is given
by

k = dn × logwmaxwe. (3)

We consider four centrality measures: degree centrality [19], be-
tweenness centrality [19], closeness centrality [19], and eigenvec-
tor centrality [3]. Degree centrality, betweenness centrality, and
closeness centrality are indices that represent the influence of a
node on others based on its degree, the proportion of shortest paths
between all other node pairs passing through the node, and the
shortest path lengths from the node to all other nodes, respectively.
Eigenvector centrality is an index that represents the influence of a
node on others based on the centrality of adjacent nodes.

We rank all the nodes in graphs G and Gn by sorting them in
descending order of their centrality measures. Then, we calculate
the consistency of node rankings [6] between graphs G and Gn.
As measures of ranking consistency, we use Top1, Top3, Top10%,
Overlap10%, and R2 [6]. Topm is 1 if the most central node in
graph G lies in the top m most central nodes in graph Gn, and
otherwise it is 0. Topp% is 1 if the most central node in graph
G lies in the top p% of nodes in graph Gn, and otherwise it is 0.
Overlapp% is the number of nodes in both the top p% of graph
G and the top p% of graph Gn, divided by the number of nodes
in either. R2is the square of the Pearson correlation coefficient
between centrality measures in graph G and those in graph Gn.

Using the four network generation models, we randomly gener-
ated 2,000 graphs, where the number of nodes is 100 and the aver-
age node degree is 5, and calculated the averages and 95% confi-
dence intervals of the various ranking consistency indices.

The parameter values used in the network generation models are
shown in Tab. 1. Since the 95% confidence intervals were suffi-
ciently small in all cases, only the averages of the ranking consis-
tency indices are shown in the following results.

3. RESULTS

3.1 Effect of Method for Link Weight Quanti-
zation and Quantization Level

First, we investigate how the centrality measures are affected by
the method for link weight quantization (i.e., linear quantization or
logarithmic quantization) and the quantization level.



Table 1: Parameter of network generation models
CE model WE model WECS model RR model

δ 1.0 δ 1 M 2 p 0.05
pδ 8.85 × 10−3 m 3 m0 3 a 1.5
pd 1 × 10−3 α 0.15 b 1
pr 1 × 10−3 β 0.1
time step 25,000 η 0.1

m 2
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Figure 1: The relation between the quantization level n and the
consistency of node ranking (WECS model, closeness
centrality, linear quantization)

In what follows, we show the results obtained when using the
WECS model as the network generation model and closeness cen-
trality as the centrality measure.

Figure 1 shows the relation between quantization level n and
consistency of node ranking (Top1, Top3, Top10%, Overlap10%,
and R2) when using linear quantization. Note that n = 1 is equiv-
alent to ignoring link weight. Figure 2 shows the results for loga-
rithmic quantization.

Comparison of the results for linear quantization (Fig. 1) and for
logarithmic quantization (Fig. 2) shows that logarithmic quantiza-
tion is a more robust method than linear quantization. As we have
discussed in Section 2, the distribution of link weights of a graph
generated from the WECS model follows a power-law distribution.
Hence, the quantization levels can be more effectively utilized by
using logarithmic quantization rather than linear quantization and,
as a result, logarithmic quantization is more robust. This suggests
that, in order to use quantization levels effectively, it is important
to design questionnaires appropriately to match the distribution of
link weights in the graph used in the social network analysis.

Moreover, we can see in Fig. 2 that, while all indices measuring
node ranking consistency are more than approximately 0.9 when
the quantization level is five or more, Top1, Overlap10%, and R2take
small values when the quantization level is less than five. Since the
average value of Top1 is the proportion of times that the most cen-
tral node in graph G is also the most central node in graph Gn,
the average value of Top1 is naturally smaller than the averages
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Figure 2: The relation between the quantization level n and the
consistency of node ranking (WECS model, closeness
centrality, logarithmic quantization)

of Top3 and Top10%. In contrast, Overlap10% and R2are broad-
range ranking consistency indices that do not focus only on the
most central node.

These results suggest that the effect of link weight quantization
is not so significant when the purpose of social network analysis is
to infer the most central node. However, these results also suggest
that five to eight quantization levels are necessary for determining
both the most central node and broad-range node rankings.

3.2 Effect of Graph Structure
Since there are several definitions of links (i.e., social ties among

individuals) in social network analyses, the effect of link weight
quantization on centrality measures in graphs with different struc-
tural characteristics should be investigated. We therefore generate
graphs with different structural characteristics using four network
generation models, and investigate the relation between the quanti-
zation level n and the consistency of node ranking.

In this investigation, closeness centrality is used as the centrality
measure and logarithmic quantization is used as the quantization
method.

Figure 3 shows the relation between the quantization level n
and the consistency of the top 10% node ranking, Overlap10%, in
graphs produced by the four network generation models.

While the curves representing relations between quantization level
n and Overlap10% are monotonically increasing regardless of the
network generation model, their forms are significantly different.
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Figure 3: The relation between the quantization level n and the
consistency of the top 10% node ranking, Overlap10%,
in the graphs generated by the four network generation
models (closeness centrality and logarithmic quantiza-
tion)

In particular, the values of Overlap10% when link weights are ig-
nored (n = 1) are significantly different for each model. Further-
more, when we focus on quantization levels of two or more steps,
we find that the four models can be classified into two categories:
models in which the consistency of node rankings does not signif-
icantly decrease (WE and WECS models), and models in which
the consistency of node rankings decreases rapidly (CE and RR
models). This observation suggests that structural characteristics
of graphs affect the robustness of centrality measures against link
weight quantization.

Table 2 shows the averages and standard deviations for various
structural characteristics of graphs and several statistics of the link
weights calculated from 2,000 graphs randomly generated by the
four network generation models. The average and standard devia-
tion of the correlation between node degrees and link weights (i.e.,
correlation between wi,j , which is the weight of link (i,j), and the
sum of degrees of nodes i and j) are also shown in Tab. 2. The
modularity of a graph with respect to some division of the graph
into subgraphs measures how good that division is. The mean and
standard deviation of the maximum modularity scores are given
from clustering obtained by using modularity maximization [7].

Figure 3 and Tab. 2 show that if the skewness of the degree dis-
tribution is large and the correlation between node degrees and link
weights is strong in graph G, then graph G is robust against link
weight quantization. Thus, these results suggest that the effect of
link weight quantization on centrality measures depends greatly on
the characteristics of graphs used in social network analyses. It is
intuitive that a strong correlation between node degrees and link
weights in graph G results in the robustness of graph G against
link weight quantization, since it is expected that the link weights
contain little information in such graphs. Note that eigenvector cen-
trality is reported to be robust against random link rewiring in scale-
free networks, for which the skewness of the degree distribution is
large [12]. Moreover, the four centrality measures are also known
to be robust against the random addition and deletion of nodes and
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Figure 4: The relation between the quantization level n and the
consistency of the top 10% node ranking, Overlap10% in
graphs produced by WECS model and in three kinds of
graphs whose correlation between node degrees and link
weights is weakened by replaced link weights randomly
at graphs produced by the WECS model (closeness cen-
trality and logarithmic quantization)

links in scale free networks [17].
To confirm that if the skewness of the degree distribution is large

and the correlation between node degrees and link weights is strong
in graph G, then graph G is robust against link weight quantiza-
tion, we investigate the relation between the quantization level n
and the consistency of node ranking in graphs whose correlations
between node degrees and link weights are weakened. We generate
graphs whose correlations between node degrees and link weights
are weakened by swapping link weights randomly in graphs gener-
ated by the four network generation models. Figure 4 shows the re-
lation between the quantization level n and Overlap10% in graphs
generated by the WECS model and in three kinds of graphs whose
correlations between node degrees and link weights are weakened
by swapping link weights randomly in graphs generated by the
WECS model. This result shows that if the correlation between
node degrees and link weights is strong in graph G, then graph G is
robust against link weight quantization. Figure 5 shows the relation
between the quantization level n and Overlap10% in graphs whose
correlation coefficient between node degrees and link weights are 0
produced by swapping link weights randomly in graphs generated
by the four network generation models. This result shows that if the
skewness of the degree distribution is large in graph G, then graph
G is robust against link weight quantization even when the correla-
tion coefficient between node degrees and link weights in graphs is
0.

These results suggest that graphs with high skewness of their de-
gree distribution and/or with high correlation between node degrees
and link weights are robust against link weight quantization.

3.3 Effect of the Type of Centrality Measure
Finally, we investigate that how the effects of link weight quan-

tization differ for the four types of centrality measure. Figures 6
and 7 show the relation between the quantization level n and the



Table 2: The characteristics of graphs produced by four kinds of network generation models (average µ and standard deviation σ)
CE model WE model WECS model RR model

µ σ µ σ µ σ µ σ

The characteristics of graphs
average degree 5.47 0.42 5.88 0.00 4.07 0.06 4.95 0.38

average shortest path length 3.59 0.29 2.39 0.04 3.44 0.14 3.03 0.18
clustering coefficient [22] 0.38 0.03 0.11 0.01 0.10 0.01 0.05 0.01

modularity [7] 0.81 0.03 0.24 0.02 0.51 0.03 0.59 0.04
skewness of the degree distribution 1.16 0.45 3.62 0.39 2.70 0.48 0.38 0.25
kurtosis of the degree distribution 1.97 2.31 14.0 3.57 8.36 3.86 0.00 0.67

Statistics of the link weights
average 482 68.3 1.98 0.00 3.69 0.46 3.02 1.82

standard deviation 898 190 1.73 0.09 8.69 2.26 8.22 27.2
median 155 27.8 1.37 0.04 1.03 0.16 1.59 0.07

skewness 4.13 1.30 3.47 0.39 5.75 1.29 7.90 3.33
kurtosis 24.8 19.5 14.3 3.67 40.0 19.5 84.1 63.0

maximum of link weights 7618 2988 12.8 1.49 78.3 29.8 110.4 2427.8
correlation coefficient between node degrees and link weights 0.18 0.08 0.57 0.04 0.36 0.07 0.00 0.07
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Figure 5: The relation between the quantization level n and the
consistency of the top 10% node ranking, Overlap10%

in graphs whose correlation coefficient between node de-
grees and link weights is 0 by swapping link weights ran-
domly at graphs produced by the four network genera-
tion models (closeness centrality and logarithmic quanti-
zation)

consistency of the top 10% node rankings, Overlap10%, in graphs
generated by the CE model and the WECS model.

Figures 6 and 7 show that the relations between quantization
level and node ranking consistency are quite similar for three of
the four types of centrality measures. Hence, as we have discussed
in Section 3.2, these results suggest that the effect of link weight
quantization on centrality depends significantly on the characteris-
tics of the graphs rather than on the type of centrality used in social
network analysis. The four types of centrality measure also have
a similar robustness against random addition and deletion of nodes
and links [6].

However, Fig. 6 shows that when using eigenvector centrality,
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Figure 6: The relation between the quantization level n and the
consistency of node rankings, Overlap10%, in graphs
produced by the CE model (logarithmic quantization)

the consistency of the node rankings, Overlap10%, is significantly
smaller than for other centrality measures. Due to space limita-
tions, the results for RR model are not shown, but we note that the
robustness of eigenvector centrality in graphs generated by the RR
model is found to be similar to that for graphs generated by the
CE model. Further investigation is needed to determine the reason
why eigenvector centrality is significantly affected by link weight
quantization in graphs generated from the CE and RR models.

4. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the effect of link weight quan-

tization on the centrality measures (i.e., degree, betweenness, close-
ness, and eigenvector centralities). Consequently we have shown
that (1) the effect of link weight quantization on the centrality mea-
sures are not significant to infer the most important node in the
graph, (2) conversely, 5–8 quantization level is needed to infer
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consistency of node rankings, Overlap10%, in graphs
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not only the most important node but also other important nodes
since link weight quantization significantly affects the centrality
measures, and (3) graphs with high skewness of their degree distri-
bution and/or with high correlation between node degree and link
weights are robust against link weight quantization.

We are planning to mathematically analyze the effects on the
centrality measures of link weight quantization and of noise in link
weights.
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