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ABSTRACT

We propose a method for the Distributed Assessment of the
Closeness CEntrality Ranking (DACCER) in complex net-
works. DACCER computes centrality based only on local-
ized information restricted to a given neighborhood around
each node, thus not requiring full knowledge of the network
topology. We show that the node centrality ranking com-
puted by DACCER is highly correlated with the node rank-
ing based on the traditional closeness centrality, which re-
quires high computational costs and full knowledge of the
network topology. This outcome is quite useful given the
vast potential applicability of closeness centrality, which is
seldom applied to large-scale networks due to its high com-
putational costs. Results indicate that DACCER is simple,
yet efficient, in assessing node centrality while allowing a
distributed implementation that contributes to its perfor-
mance. This also contributes to the practical applicability of
DACCER in the analysis of large-scale complex networks, as
we show using in our experimental evaluation both synthet-
ically generated networks and traces of real-world networks
of different kinds and scales.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks|

General Terms

Design, Algorithms, Performance

Keywords
Network Science, Centrality, Distributed Algorithm, Close-
ness

1. INTRODUCTION

The concept of network centrality is an important tool to
analyze complex networks [1, 11, 18]. In broad terms, net-
work centrality measures the relative importance of nodes in
a complex network. Different ways of measuring centrality
have been proposed for decades [9, 20], each of them suited
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to assess node centrality from a different point of view. Ex-
amples include using network centrality to evaluate network
robustness to fragmentation or to identify the most impor-
tant nodes for efficient information spreading in diffusion
networks.

As the definitions for centrality vary, so varies the difficulty
in computing centrality, ranging from low cost (e.g., degree
centrality) to others far more costly, such as betweenness and
closeness centralities. The later two, even though very use-
ful, are costly because they rely on the determination of the
shortest path between all pairs of nodes, thus also requiring
full knowledge of the network topology. A high computa-
tional cost and the requirement of full knowledge of network
topology becomes a significant obstacle for applying the gen-
eral concept of network centrality to the large-scale complex
communication networks we face nowadays, such as the In-
ternet routing structure, online social networks, P2P net-
works, and content distribution networks. Hence, research
in network science has been recently dedicated to dealing
with centralities in large-scale networks (Section 4 reviews
related work). Typically, these recent efforts either (i) op-
timize the way traditional centralities are calculated or ap-
proximated [4, 21]; or (ii) propose methods to distributively
assess network centrality without requiring full knowledge
of the network topology [10, 12, 17].

In this paper, we propose DACCER (Distributed Assess-
ment of the Closeness CEntrality Ranking), a distributed
method to assess network centrality based only on localized
information restricted to a given neighborhood around each
node. DACCER computes centrality in a fully distributed
way, without requiring full knowledge of the network topol-
ogy. In centrality-based network analysis, the position of
each node in the centrality ranking is typically more impor-
tant than the particular centrality value associated to each
node. The node centrality ranking computed by DACCER
is highly correlated with the node ranking based on the tra-
ditional closeness centrality, which requires high computa-
tional costs and full knowledge of the network topology. This
outcome is quite useful given the vast potential applicability
of closeness centrality, which is seldom applied to large-scale
networks due to its high computational costs even if the full
network topology is known. We show DACCER is simple,
yet efficient, in distributively assessing network centrality.
This conclusion stems from a thorough evaluation of DAC-
CER using both synthetically generated networks and traces
of real-world networks of different kinds and scales.



This paper proceeds as follows. Section 2 introduces DAC-
CER. Section 3 presents results from applying DACCER to
a diverse set of synthetic and real-world networks. We ana-
lyze related work in Section 4. Finally, Section 5 concludes
the paper and discusses future work.

2. DACCER

This section describes DACCER. Section 2.1 introduces key
definitions and the theoretical ground to understand DAC-
CER. Section 2.2 presents how the centralities are distribu-
tively computed. In Section 2.3, we discuss the main prop-
erties of DACCER.

2.1 Key definitions and background

We consider a network as equivalent to an undirected finite
simple graph G = (V, E), where V is the set of nodes and
E the set of edges. The distance between two nodes in the
network is defined as the number of hops in the shortest
path connecting these nodes. The radius r of a graph G =
(V, E) is equivalent to the minimum eccentricity of any node,
i.e., r = min;ev (max;ev d(7, j)) where d(i, j) is the shortest
path distance between nodes ¢ and j. In the following, we
introduce key definitions for understanding DACCER in the
next subsections.

DEFINITION 1. We define the Frobenius morm of a net-
work with n nodes as the Frobenuis norm ||A||r of the ad-
jacency matric Anxn = {ai;} of the network’s associated
graph. The Frobenius norm ||Al|r is defined as

DEFINITION 2. We define the h_neighborhood of a node i,
where 1={1,...,n}, as the object containing nodes with dis-
tance to node i less or equal to h and the edges that are ad-
jacent to at least one of those nodes. The h_neighborhood
of each node i is referred to as Hj, = (Vii, EL), where V! is
the set of nodes with distance to node i less or equal to h and
E} is the set of edges adjacent to at least one of the nodes in
Vii. Therefore, the H{ is the object where Vi contains just
the node i and Ej contains the edges adjacent to i. Simi-
larly, Hi is the object where Vi contains the node i and all
its direct neighbors, while Ei contains the edges adjacent to
at least one of those nodes. In HS, Vi contains node i, its
neighbors, and all the neighbors of its neighbors, while F3
contains the edges adjacent to at least one of the nodes in
V3. The number of nodes in Hj is represented as |H}).

DEFINITION 3. We define the volume Vol(H}) of a neigh-
borhood Hj, as the sum of the degrees of its nodes, i.e.

Vol(H;) = Y dj, ()

jEH]},

where dj is the degree of node j. Note that this also in-
cludes all edges that connect nodes in Hy, to nodes outside
it. Clearly, Hy 1 O Hj, and Vol(H}, 1) > Vol(Hy).

DEFINITION 4. Given a network N and a neighborhood
Hj}, around any node i € N, we define the adjacency ma-
tric of H}, with the same dimensions n X n of the adjacency
matriz of the whole network N, containing 1s for the en-
tries that represent edges present in H}. and 0 elsewhere. It
should be clear from this definition that for every entry equal
to 1 in the adjacency matriz of Hi there is an entry equal
to 1 in the adjacency matriz of N, but the converse is not
necessarily true.

THEOREM 1. The volume of a network is the square of its
Frobenius norm.

PROOF. Let G = (V,E) be the graph associated to the
network N, V the set of nodes and E the set of edges. From
the definitions of volume and Frobenius norm,

Vol(N) =3 di=> > lai;|* = (JAllr)*.  (3)

i€V i=1 j=1

Since all entries of an adjacency matriz of a undirected sim-
ple graph are either 0 or 1, squaring them has no effect.
Thus, considering the well-known fact that for this kind of
graph the sum of entries in a adjacency matriz equals its vol-
ume, we conclude that Eq. 8 holds as well as Theorem 1. [

2.2 Distributed assessment of centrality

In DACCER, the centrality value of each node 7 in the net-
work is defined as the Vol(H}), as stated in Definition 3.
Since Theorem 1 shows that the volume is the square of
the Frobenius norm for a network, it becomes clear that
the volume is a valid form to discriminate h_neighborhoods.
It can be seen from this and from Definition 4 that two
h_neighborhoods have the same volume if and only if they
have the same Frobenius norm. In this sense, the neighbor-
hood H} can be viewed as an approximation to the whole
network as h increases, since the Frobenius norm ||G — H} ||
decreases when Vol(H}) increases and goes to zero when
H} = G. Also, given a determined radius (e.g. h = 2),
the neighborhood with the highest volume will be the one
more connected and therefore denser, leading to the idea
that the central node ¢ of such neighborhood will be closer
to the other nodes, showing the basis for the correlation with
closeness centrality ranking. Further, it can be seen that, for
this correlation to hold, the neighborhoods should in a way
be representative of the whole network and so, the radius
of the network should not be much larger than the radius
chosen for the neighborhoods. From this, it can be seen that
when applied with small neighborhood radius (e.g. h = 2)
this method should work for networks where the network’s
radius is relatively small as compared to the size of the net-
work, such as networks with the small world property. This
represents a large family of practical networks with many
examples of real-world networks of interest.

To compute the volume-based centrality values for all the
nodes in the network, we choose a value for A and then find
Vol(H;}) for each node i. Clearly, the choice of h directly
impacts the obtained result. With h = 0, this localized
centrality becomes the traditional degree centrality. With
h > 0, each node i needs to discover its own Hj, along with
the degree of each node belonging to it. To achieve this, each



node sends its identity and degree to each of its neighbors in
a message with time-to-live (TTL) equal to h. This message
also carries a unique message id (e.g., the originator node
id plus a time stamp) in order to prevent retransmissions
of repeated messages. Upon receiving such a message, each
node checks the message id to determine if it has received
this message before. If the message is new, the node stores
the provided information—since it is necessary for determin-
ing its own h_neighborhood. As only localized information
is required, buffer complexity at each node 7 is limited to
O(|H}|). The node then decrements the TTL. If the TTL
is not zero, the node relays the message to all its neigh-
bors; otherwise, no further action is taken. This runs in
parallel at each node and after h steps, all nodes know their
h_neighborhoods and the degree of its components.

We analyze the message and time complexity of this algo-
rithm in the following. First consider the extreme case of h
being sufficiently large to cover all the network, i.e., the H}
for each node i encompasses every other node in the net-
work. In this case, since every node only forwards new mes-
sages, an absolute upper bound for the number of messages
equals the number of nodes times the total volume of the
network. When applying DACCER to practical cases, how-
ever, an h significantly lower than the radius of the network
(e.g., h = 2) is enough to generate localized information able
to achieve a suitable trade-off between efficiency in assess-
ing network centrality and applicability costs, as we analyze
later in Section 3.2. For h = 2, each node sends a mes-
sage to all its neighbors and these neighbors in turn forward
each new received message to their neighbors. Therefore,
for h = 2, the expected message complexity is O(n x dgvg)7
where n is the number of nodes in the network and davg
is the network average degree. As for the time complexity,
the information generated at each node has to spread for h
hops in order to reach all its destinations. Therefore, the
expected time complexity is O(1) steps once an h is chosen.

After each node i has determined its Hi neighborhood, the
centrality values for all nodes can be calculated. For that,
each node i calculates Vol(H}), as stated in Definition 3.
Since all information needed for this computation is already
known by each node, no message exchange is necessary. Fur-
ther, each localized volume Vol(H}.) consists of a simple sum
of |H} | terms, therefore having a modest computational cost
for each node.

2.3 DACCER properties

As we previously mentioned, in the trivial case where h = 0,
the localized volume-based centrality exactly matches the
traditional degree centrality. However, as h increases, the
h_neighborhood with the largest volume in general coin-
cides with the h_neighborhood with the largest number of
nodes. Moreover, since the volume considers all the connec-
tions to nodes outside the neighborhood, this means that
the h_neighborhood with the largest volume is associated to
the (h+ 1)_neighborhood with the largest number of nodes.
Intuitively, we observe that this construction is highly re-
lated to the concept of the traditional closeness centrality,
since the closeness centrality can be defined in terms of how
many nodes can be reached at increasing distances from the
node in consideration.

From these properties, we can intuitively expect the local-
ized volume-based centrality provided by DACCER to cor-
relate well with the traditional closeness centrality. This
is indeed experimentally confirmed in Section 3.1. We can
also expect the strength of this correlation to depend on the
network topology as well as on the choice of h. Later in
Section 3.2, we empirically show that for synthetic networks
and trace-based real-world networks of different kinds—both
in structure and scale—, h = 2 provides a suitable choice.

3. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DACCER
in assessing the network centrality in a distributed way.
We present experimental results using different networks on
(i) the correlation between rankings provided by DACCER
and by closeness centrality; (ii) the trade-off between neigh-
borhood size and applicability costs; (iii) the practical ap-
plicability of DACCER in large-scale networks.

3.1 DACCER and closeness centrality

At the end of Section 2.2, we argue that we expect a high
level of correlation between the node ranking provided by
closeness centrality and the node ranking provided by DAC-
CER. In this section, we experimentally confirm this claim
by analyzing the correlation between these rankings obtained
from different synthetically generated networks as well as
traces of real-world networks.

We first evaluate the correlation obtained in two kinds of
synthetic networks: 100 scale-free networks based on the
Barabdsi-Albert (BA) model [2] and 100 random networks
based on the Erdés-Rényi (ER) model [7]. The BA networks
have 1,000 nodes each and are created with 5 connections
per new node, resulting in a 9.95 mean node degree. The ER
networks also have 1,000 nodes and a connection probability
p = 0.01, which corresponds to 1.5 X lnl(l)ggo, ensuring that
the resulting networks are connected as it is known that
p > I“T" is a sharp threshold for the connectedness of ER
networks. The mean degree of the ER networks can vary,
but in this case remains close to 10.

Figure 1 shows the correlation between the rankings pro-
vided by DACCER (h = 2) and by closeness centrality for
each node in one BA and one ER network, both randomly
chosen among the set of 100 BA and 100 ER networks. We
observe a high correlation in both cases: for the BA network
the correlation coefficient R between the rankings based on
closeness centrality and DACCER (h = 2) is R = 0.9979
while for the ER network is R = 0.9970. Considering the
whole set of 100 BA and 100 ER networks, all results for
the correlation coefficient are between Ry.in = 0.9972 and
Rimaz = 0.9986 for the BA networks and between Rpmin =
0.9962 and R,qaz = 0.9975 for the ER networks.

We next analyze the correlation between node rankings pro-
vided by closeness centrality and by DACCER using the
network traces specified in Table 1. Actors represents a so-
cial network where edges link actors (nodes) who worked
in the same movie [2]. Routers-CAIDA refers to the giant
connected component of a router-level network topology col-
lected by CAIDA [5]. RouteViews represents a symmetrized
snapshot of the AS-level Internet structure reconstructed
from BGP tables [19]. PGP-net refers to a network of users
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Figure 1: Correlation between rankings provided by DACCER and closeness centrality.

Table 1: Real-world network traces and their ranking correlation for h = 2.

Network trace

| # of nodes | # of edges | radius | ranking correlation (R)

Actors [2] 374,511 | 15,014,850 4 0.9537

Routers-CAIDA [5] 190,914 607,610 13 0.9066

RouteViews [19] 22,693 48,436 6 0.9954

PGP-net [3] 10,680 24,316 12 0.8704
of the Pretty-Good-Privacy algorithm for secure informa-

tion exchange [3]. Limiting message complexity by setting
h = 2, the correlation coefficient was high for all considered
networks, as shown in Table 1. In Section 3.2, we perform
a cost-effectiveness analysis that indicates h = 2 as a suit-
able choice to balance the trade-off between cost and the
resulting correlation between rankings provided by closeness
centrality and by DACCER.

The high correlation between the node rankings provided by
DACCER and by closeness centrality constitutes a key out-
come. Closeness centrality is a basic metric to analyze com-
plex networks. To the best of our knowledge, however, there
is no distributed method to compute the closeness centrality.
Even if the full network topology is known, closeness central-
ity is too costly—O(nm +n?logn) where n is the number of
nodes and m is the number of edges—to be applied in very
large complex networks. DACCER thus provides a simple,
efficient, and practical alternative to rank nodes in very large
complex networks in close relation with the node ranking by
closeness centrality.

3.2 Trade-off between: and message cost
An increase on h causes an increase in the number of mes-
sages needed to obtain the localized volume-based central-
ity of each node. Hence, one has to consider the cost-
effectiveness relation of increasing h, balancing the trade-off
between the message cost and the correlation coefficient of
the node rankings provided by DACCER and by closeness
centrality.

Figure 2 shows this trade-off for the traces of real-world
networks (Table 1). The vertical axis at the left refers to
the correlation coefficient of the node ranking provided by
DACCER and the one provided by closeness centrality. The
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Figure 2: Trade-off between the message cost
and the correlation coefficient between rankings by
DACCER and closeness centrality with increasing h.

vertical axis at the right shows the normalized number of
messages. The normalization is done for the sake of com-
parability so that the message cost for h = 4 equals one,
and all other cost are proportional to this. For all three net-
works the best trade-off between the correlation coefficient
and the message cost happens with h = 2—i.e., the message
cost is still low and the correlation coefficient is relatively
high. The same is also valid for all the synthetically gener-
ated networks considered in this paper. This suggests h = 2
provides a suitable cost-effectiveness balance.

3.3 Practical applicability of DACCER

Computing the localized volume-based centrality with DAC-
CER only requires each node to know the degrees of the
nodes belonging to its h_neighborhood. This means DAC-
CER can be used in networks where the topology is fully
known and also in networks where each node only knows
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its direct neighbors. Furthermore, DACCER can be im-
plemented in different ways, ranging from a centralized ap-
proach running on a single CPU core to a fully distributed
approach with the analysis of each node running on a sepa-
rate core.

To evaluate the practical applicability of DACCER, we com-
pare the time spent for calculating the closeness centrality
ranking using the traditional algorithm running on a sin-
gle CPU core with DACCER implementations running on 1
and 32 CPU cores, each core equivalent to the one used for
traditional closeness. This study evaluates the performance
gains allowed by DACCER, even in a modestly parallelized
implementation, when compared with the traditional imple-
mentation of closeness centrality, which is not easily par-
allelizable. In the parallelized DACCER implementation,
the network nodes are distributed among the 32 cores and
each core calculates the centrality of its assigned nodes. The
whole network topology information is available to all cores
in shared memory.

Figure 3 presents the execution time in seconds to compute
the closeness centrality ranking and the DACCER ranking
as a function of the network complexity. As the measure
of network complexity, we consider the number of nodes n
times the number of edges m of each analyzed network. Fig-
ures 3(a) and 3(b) show the time spent to compute the close-
ness centrality ranking and the DACCER, ranking for the
network traces presented in Table 1 in a single CPU core,
respectively. In turn, in Figure 3(c), we present the time
spent to compute the centrality ranking based on DACCER
using 32 CPU cores. Figure 3(c) shows results for the two
largest networks in Table 1, namely Routers-CAIDA and Ac-
tors, and for two additional large networks: the anonymized
social network of Youtube users [16] with 1,134,890 nodes
and 2,987,624 edges and the Internet’s Autonomous systems
network by Skitter [13] with 1,696,415 nodes and 11,095,298
edges. These two latter networks present a scale that strongly
limits the practical applicability of the closeness centrality
to rank their nodes. We emphasize that Figure 3(a) uses
a different scale for the execution time than Figures 3(b)
and 3(c). For instance, the computation of the closeness
centrality ranking for the Actors network takes 3 x 10° sec-
onds (roughly 34 days) in the single CPU core, whereas the
DACCER centrality ranking is computed after 6,500 sec-
onds (about 1,8 hours) using the single CPU core and in
only 640 seconds (about 10 minutes) using the 32 CPU

cores. From this experiment, it becomes clear that, even
with a modest parallelization, DACCER  is orders of mag-
nitude faster than the traditional closeness centrality algo-
rithm. Therefore, the possibility of parallelizing DACCER
execution makes it applicable to the analysis of large-scale
networks for which it would be unfeasible in practice to
compute closeness centrality. For instance, the Skitter-AS
network is analyzed using DACCER in about 1 hour using
the 32 CPU cores. Further, DACCER does not require full
knowledge of the network topology, being therefore applica-
ble on networks where the topology is not fully known.

4. RELATED WORK

There are many centrality measures for assessing the relative
importance of nodes in a network under different criteria,
such as the capacity for information diffusion or relevance
for connectivity. Examples are the traditional degree, be-
tweenness, closeness, and eigenvector centralities [9, 20].

The computing of most of the traditional centralities is in
general computationally expensive and requires full knowl-
edge of the network topology. Therefore, some recent ef-
forts are dedicated to optimize the way by which traditional
centralities are calculated or approximated [4, 21]. These
methods, however, still require full knowledge of the network
topology to compute a centrality approximation, hindering
their applicability to large-scale networks where such an in-
formation is unavailable and a distributed implementation
is required.

Alternatively, as our proposal, some previous works investi-
gate methods to assess network centrality in a distributed
way, without requiring full knowledge of the network topol-
ogy [10, 12, 17]. Lehmann and Kaufmann [12] propose
a framework for computing shortest-path based centrali-
ties, such as closeness and betweenness, in a decentralized
way, but their proposal is still computationally expensive
for application to large-scale complex networks. Kermarrec
et al. [10] use a random walk to distributively assess net-
work centrality in complex networks, however their random
walk approach does not particularly correlate with close-
ness centrality and presents a high convergence time. Lim
et al. [14] find the top-k centrality nodes on a network by
sampling. Ercsey-Ravasz and Toroczkai [6] approximate be-
tweenness centrality using only local neighborhoods on a
network. Nanda and Kotz [17] propose a new centrality met-
ric called Localized Bridging Centrality (LBC). LBC pro-



vides a specialized centrality targeted at locating bridges,
i.e., edges whose removal disconnects the network using only
one-hop neighborhoods around each node. The proposed use
of LBC is on relatively small-scale wireless mesh networks.
One of the main motivations behind the LBC proposal is a
paper by Marsden [15], which shows empirical evidence that
localized centrality measures computed for one-hop neigh-
borhood are highly correlated to a global centrality measure.
Everett and Borgatti [8] explore this notion to approximate
betweenness centrality. In this paper, we extend this notion
by proposing DACCER and showing that the node rank-
ing based on its localized volume-based centrality correlates
well with the closeness centrality ranking. In a previous
work [22], we applied a similar method using spectral anal-
ysis to locally assess centrality, but this approach does not
correlate with closeness centrality and present a higher com-
putational cost than our current proposal.

5. CONCLUSION

In this paper, we propose DACCER, a novel distributed
method to approximate the closeness centrality ranking in
large complex networks, without requiring full knowledge
of the network topology. DACCER computes a localized
volume-based centrality at each node considering only a
limited neighborhood around every node. In short, DAC-
CER achieves a node ranking that is highly correlated with
the ranking based on the traditional closeness centrality,
whereas with applicability costs that are significantly lower.
We show h = 2 presents a suitable trade-off between lim-
ited message costs and high correlation with the closeness
centrality ranking. This depends on the network radius not
being too large compared to h. Most complex networks of
interest present small world properties (i.e., small radius
compared to network size), thus rendering DACCER appli-
cable to the practical analysis of these networks. Overall,
DACCER contributes with a simple yet efficient method to
approximate closeness centrality ranking in large-scale com-
plex networks that can be run in a fully distributed way.

Most complex networks also present dynamic behavior. As
future work, we plan to investigate how DACCER can con-
tribute to the analysis and modeling of dynamic networks.

6. ACKNOWLEDGMENTS

This work was partially supported by the Brazilian Funding
Agencies FAPERJ and CNPq. Authors thank Alan Mis-
love (Northeastern University) for providing the datasets
used in [16]. Authors also thank Ana Paula C. da Silva
(UFJF), Anténio Tadeu A. Gomes (LNCC), and Daniel R.
Figueiredo (UFRJ) for their comments on our work.

7. REFERENCES

[1] R. Albert and A. Barabasi. Statistical mechanics of
complex networks. Reviews of modern physics,
74(1):47-97, 2002.

[2] A. Barabdsi and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509-512, 1999.

[3] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, and
A. Arenas. List of edges of the giant component of the
network of users of the Pretty-Good-Privacy algorithm
for secure information interchange. Physical Review E,
70(056122), 2004.

[4] U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology,
25(2):163-177, 2001.

[5] CAIDA. CAIDA’s router-level topology
measurements, 2003.

[6] M. Ercsey-Ravasz and Z. Toroczkai. Centrality scaling
in large networks. Physical Review Letters,
105(3):038701, 2010.

[7] P. Erdés and A. Rényi. On random graphs.
Publicationes Mathematicae, 6:290-297, 1959.

[8] M. Everett and S. Borgatti. Ego network betweenness.
Social Networks, 27(1):31-38, 2005.

[9] L. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40(1):35-41, 1977.

[10] A.-M. Kermarrec, E. Le Merrer, B. Sericola, and
G. Trédan. Second order centrality: Distributed
assessment of nodes criticity in complex networks.
Computer Communications, 34(5):619-628, Apr. 2011.

[11] H. Kim, J. Tang, R. J. Anderson, and C. Mascolo.
Centrality prediction in dynamic human contact
networks. Computer Networks, 2012. To appear.

[12] K. Lehmann and M. Kaufmann. Decentralized
algorithms for evaluating centrality in complex
networks. Technical report, Wilhelm Schickard
Institut, 2003.

[13] J. Leskovec, J. Kleinber, and C. Faloutsos. Graphs
over time: Densification laws, shrinking diameters and
possible explanations. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), 2005.

[14] Y.-S. Lim, D. S. Menasche, B. Ribeiro, D. Towsley,
and P. Basu. Online estimating the k central nodes of
a network. In Proc. of the IEEE Network Science
Workshop (NSW), June 2011.

[15] P. Marsden. Egocentric and sociocentric measures of
network centrality. Social Networks, 24(4):407-422,
Oct. 2002.

[16] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In Proc. of the ACM/Useniz
Internet Measurement Conference (IMC), San Diego,
CA, Oct. 2007.

[17] S. Nanda and D. Kotz. Localized bridging centrality
for distributed network analysis. In Proc. of Int.
Conference on Computer Communications and
Networks (ICCCN), pages 1-6. IEEE, Aug. 2008.

[18] M. E. J. Newman. The structure and function of
complex networks. STAM Review, 45(2):167-256, 2003.

[19] M. E. J. Newman. Internet — a symmetrized snapshot
of the structure of the internet at the level of
autonomous systems, 2006.

[20] G. Sabidussi. The centrality index of a graph.
Psychometrika, 31(4):581-603, 1966.

[21] Z. Shi and B. Zhang. Fast network centrality analysis
using GPUs. BMC Bioinformatics, 12(1):149, 2011.

[22] K. Wehmuth and A. Ziviani. Distributed algorithm to
locate critical nodes to network robustness based on
spectral analysis. In Proc. of the Latin American
Network Operations and Management Symposium
(LANOMS), Oct. 2011.



