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ABSTRACT
This paper analyzes the adoption of unstructured P2P over-
lay networks to build publish-subscribe systems. We con-
sider a very simple distributed communication protocol, ba-
sed on gossip and on the local knowledge each node has
about subscriptions made by its neighbours. A mathemati-
cal analysis is provided to estimate the number of nodes re-
ceiving the event. These outcomes are compared to those ob-
tained via simulation. Results show even when the amount
of subscribers represents a very small (yet non-negligible)
portion of network nodes, by tuning the gossip probability
the event can percolate through the overlay.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Algorithms, Performance, Theory

1. INTRODUCTION
Publish-subscribe is a distributed paradigm that gained a

lot of attention in the last years. Today, it is widely used in
several large-scale distributed applications, such as checking
stock exchange quotations, information dissemination, tar-
geted advertising, multiplayer online games, decentralized
business process execution, workflow management, and dis-
covery [2]. The interesting feature of a publish-subscribe sys-
tem is that it allows nodes to communicate asynchronously
in a loosely and decoupled manner. In a publish-subscribe
system, there are nodes which are interested in receiving
some type of contents; they are referred as subscribers. Pub-
lishers are those actors who produce information. Loose-
coupling is achieved since producers do not have information
on the identity and number of subscribers, as well as con-
sumers subscribe to specific information without knowing
the identity and number of possible publishers.
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Publish-subscribe systems can be implemented by resort-
ing either to centralized or distributed solutions. The typ-
ical lack of scalability and fault-tolerance of centralized so-
lutions led to the study of distributed solutions. Among
the plethora of different solution, an interesting approach
is based on unstructured Peer-to-Peer (P2P) overlay net-
works [8]. In an unstructured P2P overlay, links among
nodes are established arbitrarily. They are particularly sim-
ple to build and manage, with little maintenance costs, yet at
the price of a non-optimal organization of the overlay. Peers
locally manage their connections to build some general de-
sired topology and links do not depend on the contents being
disseminated [4]. Publish-subscribe systems can be built on
top of unstructured networks by adopting either a gossip-
based communication protocol, or some more sophisticated
algorithm to route messages in the overlay. Contents can be
replicated or not, as well as queries. In any case, we might
sum up that these systems can be effectively employed when:
i) the number of nodes is very high and dynamic, with high
churn rates; ii) there is a high number of publications to han-
dle; iii) there is a high number of subscribers to a given type
of contents and hence usually an event must be propagated
to reach a non-negligible portion of nodes in the overlay.

In this work, we study if a general P2P publish-subscribe
system can be implemented on top of unstructured overlay
networks. In particular, to distribute events through the un-
structured overlay, we consider a simple dissemination pro-
tocol which is based only on local knowledge among neigh-
bour peers and gossip. We analyze such protocol through an
analytical model which estimates the amount of subscribers
that may receive a given event. The approach is quite gen-
eral; the network topology can be set by defining the node
degree distribution probability. Depending on the network
topology, the proportion of subscribers in the overlay, and
the gossip probability threshold, it is possible to understand
if the event reaches only a limited amount of nodes, or if it
is spread through the whole network, i.e. it might reach an
infinite amount of nodes. Of course, this happens only when
the network topology has a giant component.

Numerical outcomes are compared with those obtained
via simulation. Outcomes confirm that a node subscribing
to a given type of contents will receive an event matching its
subscriptions with high probability. Of course, we are not
suggesting here to replace completely structured schemes,
usually employed to build publish-subscribe services, with
unstructured overlays using gossip. Rather, our claim is
that this solution represents an interesting alternative when
dealing with large scale and highly dynamic systems. In



this case, in fact, the costs for managing and maintaining a
structured (or centralized) distributed system is quite high.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the system model. Section 3 states the lo-
cal protocol executed at each node. Section 4 presents the
mathematical model. Section 5 outlines results coming from
a numerical analysis and simulation. Finally, Section 6 pro-
vides some concluding remarks.

2. SYSTEM MODEL
We consider the set of nodes organized as a P2P over-

lay network. Each node n is connected to a given subset
of nodes, whose number is specified using whatever prob-
ability distribution. The overlay does not depend on the
subscriptions made by peers in the P2P publish-subscribe
system, i.e. the overlay is unstructured. We denote with pi
the probability that a peer n has i neighbours (its degree).
We assume that the overlay has a high number of nodes.
This assumption comes from the fact that the solution we
are studying is thought for very large and highly dynamical
systems. The high number of nodes, together with the ran-
dom nature of contacts among peers in the overlay, augments
the probability of having a low clustering in the network [7].
Events produced by publishers are included within mes-

sages spread through the overlay. Direct communication
may occur only between neighbour nodes. Hence, to dis-
seminate information through the overlay, peers must act as
relays and forward messages to their neighbours.
Peers in the overlay may act as subscribers or publishers.

Subscribers register their interest in an event, or a pattern of
events. Then, they must be notified asynchronously when
events are generated by publishers [5]. Such events may
represent any kind of information which is usually filtered
based on some event classification scheme. We are not go-
ing to describe in detail the plethora of existing methods
to categorize events, since the particular approach is inde-
pendent from the dissemination strategy. It is sufficient to
assume that each event has some metadata associated to it,
and that a subscription specifies a set of metadata the node
is interested in. Peers in the overlay may be subscribers and
publishers at the same time, even for multiple patterns of
events. If a peer in the overlay is not a subscriber nor a
publisher for a given kind of content, it will act as a relay.
Each peer n stores in its cache all the subscriptions of its

neighbours. Once n receives a message containing a given
event e, it is able to understand which neighbours are inter-
ested in receiving e. Nodes maintain in their caches infor-
mation on messages which have been already handled, so as
to avoid redundancy in the communication.

3. THE PROTOCOL
In the considered system, there are two main activities

accomplished by peers. The first one is the subscription of a
peer to a given event type. The other activity is concerned
with the publication and dissemination of novel events.
The subscription protocol is very simple. When a peer

n makes a novel subscription, it informs its neighbours. In
turn, each node m receiving a message containing a novel
subscription from a neighbour n, adds a related entry in its
neighbour table. This way, each time m receives an event e
matching this subscription, m sends e to n. When a node
is no more interested in a subscription, it informs its neigh-

Algorithm 1 Dissemination protocol executed at node n

Require: Event e generated at n ∨ e received from a peer m
1: e← removeFromBuffer()
2: if e already handled ∨ TTL(e) = 0 then
3: Return
4: end if
5: decreaseTTL(e)
6: N ← n’s neighbours \ m {m = NULL if e originated at n}
7: I ← {i|i ∈ N ∧ i’s subscriptions match e}
8: for all i ∈ I do {send e to all neighbour subscribers}
9: send(e, i)
10: end for
11: for all i ∈ N \ I do {gossip to the remaining neighbours}
12: if random() < γ then
13: send(e, i)
14: end if
15: end for

bours that will remove the related entry.
The dissemination protocol is a push scheme: nodes which

have novel information to disseminate forward messages to
other peers. Algorithm 1 shows the pseudo-code of the al-
gorithm. Once a given node n generates a novel event e,
or upon reception of e from a neighbour m, n checks if it
has already handled e in the past; in such a case, n drops e
(lines 2–4). This reduces the amount of messages in the net-
work. The event is dropped also if the Time-To-Live (TTL)
associated to the event has reached a 0 value.

If e it is not dropped, n forwards it to the subset of neigh-
bours whose subscriptions match the topics associated to e,
with exception of m (lines 6–10). Then, n considers the re-
maining set of its neighbours, i.e. those nodes that are not
interested in receiving e. For each node in this subset, n
gossips e with a probability γ ≤ 1 (lines 11–15).

An important aspect is concerned with the TTL value,
employed to avoid that messages are forwarded forever in
the net. In particular, such TTL must be sufficiently large
to guarantee that the message can be spread through the
whole network. An estimation of such diameter. can be
obtained starting from the degree probability distribution,
and in most kinds of nets it is usually a low number. Hence,
based on this common assumption, we will not consider
such TTL value in the model presented in the next section.

4. NETWORK COVERAGE
In this section, we analyze the performance of the decen-

tralized P2P protocol presented in the previous section. We
specifically focus on the coverage of the overlay, i.e. the av-
erage amount of subscribers 〈s〉 that receive a given event
e. We denote with σ the probability that a node has made
a subscription matching e, i.e. σ represents the portion of
nodes in the overlay interested in receiving e. We model each
single event dissemination as a standalone activity. In other
words, the model treats the distribution of generated events
as independent tasks. This is a correct assumption if peers
have a buffer whose size is sufficiently large to handle simul-
taneous events passing through it. Conversely, the model
should be extended to consider possible buffer overflows.

We consider networks with a large number of nodes. Fol-
lowing the approach presented in [7], we assume that links
among nodes are randomly generated, based on a given node
degree distribution. This does not represent a problem, since
the overlays we are considering here are synthetic commu-
nication networks, which can be built using whatever algo-



rithm chosen during the network design phase. A conse-
quence of the random nature of the attachment process is
that, regardless of the node degree distribution, the proba-
bility that one of the second neighbours (i.e. nodes at two
hops from the considered node) is also a first neighbour of
the same node, goes as N−1, being N the number of nodes
in the overlay. Hence, this situation can be ignored since the
number of nodes is high.

4.1 Degree and Excess Degree Distributions
We denote with pi the probability that a peer n has de-

gree equal to i. Starting from n, another measure of interest
is the number of connections (links) that a node m, which
is a neighbour of n, may provide, other than the one that
connects m with n. In particular, the probability that, fol-
lowing a link in the overlay, we arrive to a peer m that has

other i links (hence its total degree is i+1) is qi =
(i+1)pi+1∑

j jpj
.

The probability qi is often referred as the excess degree dis-
tribution [7]. Probabilities pi and qi represent two similar
concepts i.e. the number of contacts of a considered peer
(its degree), and the number of contacts obtained following
a link (its excess degree), respectively. In the following, we
introduce measures obtained by considering the degree pi of
a node, and considering the excess degree qi of a link. In
this last case, with a slight abuse of notation we denote all
the probabilities/functions related to the excess degree with
the same letter used for the degree, with an arrow on top of
it, just to recall that the quantity refers to a link.

4.2 Probability of Dissemination
Given a peer n in charge of relaying an event e, the prob-

ability that n forwards e to i of its neighbours is

fi = [σ + (1− σ)γ]i
∑
j≥i

pj

(
j

i

)
[(1− σ)(1− γ)]j−i, (1)

which is obtained by considering all the possible cases of
n, having a degree higher than i, which forwards e to i
neighbours either because they are subscribers to events
matching e (with probability σ), either because they are
not subscribers but n decides to gossip e (with probability
(1 − σ)γ). Moreover, n does not gossip e to its remaining
j− i neighbours, which not subscribed to topics matching e
(with probability (1− σ)(1− γ)). In the rest of the discus-
sion, for the sake of a more readable presentation, we denote
Γ = σ + (1− σ)γ and 1− Γ = (1− σ)(1− γ).
A similar reasoning can be made to measure the probabil-

ity that, following a link we arrive to a node that forwards
e to i other nodes. This probability is readily obtained by
substituting, in (1) above, pj with qj , i.e.

−→
f i = Γi

∑
j≥i

qj

(
j

i

)
(1− Γ)j−i. (2)

To proceed with the reasoning, we need to introduce the

generating functions for fi,
−→
f i, as well as for pi, qi, i.e.

G(x) =
∑
i

pix
i,

−→
G(x) =

∑
i

qix
i, (3)

F (x) =
∑
i

fix
i,

−→
F (x) =

∑
i

−→
fix

i. (4)

In fact, if we consider the F generating function,

F (x) =
∑
i

fix
i =

∑
i

Γixi
∑
j≥i

pj

(
j

i

)
(1− Γ)j−i

=
∑
j

pj

j∑
i=0

(
j

i

)
Γixi(1− Γ)j−i

=
∑
j

pj(Γx+ 1− Γ)j = G
(
Γx+ 1− Γ

)
(5)

One might notice that all the coefficients of the introduced
generating functions are probabilities. In fact, G(1) =

∑
i pi =

1, as well as F (1) =
∑

i fi = 1, and so on. Now, it is also pos-
sible to evaluate the average of the values fi, by calculating
the derivative of F measured at x = 1, since F ′(1) =

∑
i ifi.

We have

F ′(x)
∣∣∣
x=1

=
dG

dx

(
Γx+ 1− Γ

)∣∣∣
x=1

= ΓG′(1) = Γ〈p〉, (6)

where 〈p〉 is the mean node degree probability.
From a similar reasoning,

−→
F ′(x)

∣∣∣
x=1

= Γ
−→
G ′(1) = Γ〈q〉, (7)

where 〈q〉 is the mean value of the excess degree, that is [7]1

〈q〉 =
∑
i

iqi =

∑
i i(i+ 1)pi+1∑

j jpj
=

∑
i(i− 1)ipi∑

j jpj

=
〈p2〉 − 〈p〉

〈p〉 . (8)

4.3 Number of Receivers and Subscribers
We can now consider the whole number of nodes reached

by a message starting from a given node, regardless of the
number of hops. Let denote with ri the probability that i
peers receive an event, starting from a given node. Similarly,
denote with −→r i the probability that i peers are reached by
the event dissemination, starting from a link. In general, −→r i

can be defined using the following recurrence,

−→r 0 = 0,

−→r i+1 =
∑
j≥0

−→
f j

∑
a1+a2+...+aj=i

−→r a1
−→r a2 . . .

−→r aj . (9)

Equation (9) can be explained as follows. It measures the
probability that following a link we disseminate the event to
i + 1 peers. (The case −→r 0 is impossible, since at the end
of a link there must be a node.) In general, one peer is the
one reached at the end of the link itself. Then, we consider
the probability that the peer has other j links (varying the
value of j). Each link k allows to disseminate the event to
ak peers, and the sum of all these reached peers equals to i.

Similarly, we can calculate rk as follows

r0 = 0,

ri+1 =
∑
j≥0

fj
∑

a1+a2+...+aj=i

−→r a1
−→r a2 . . .

−→r aj . (10)

In this case, we start from the peer itself, considering it has
a degree equal to j; and as before, from its j links we can
reach i other peers, globally.

1〈p2〉 refers to the second moment of pi coefficients.



The use of generating functions may be of help to handle
these two equations. In fact, if we consider the generating
functions for ri and

−→r i,

R(x) =
∑
i

rix
i,

−→
R (x) =

∑
i

−→r ix
i (11)

then, after some manipulation typical for generating func-
tions (e.g. [7]) we arrive to the following result

−→
R (x) = x

∑
j≥0

−→
f j [

−→
R (x)]j = x

−→
F (

−→
R (x)) (12)

and, similarly,

R(x) = x
∑
j≥0

fj [
−→
R (x)]j = xF (

−→
R (x)). (13)

From the generating functions, we might recover the ele-
ments ri,

−→r i composing them. Unfortunately, equations
(12), (13) may be difficult to solve, depending on the degree
probability distribution pi which controls the whole intro-
duced measures [7].
But actually, we are not interested that much in the sin-

gle values of ri,
−→r i. In fact, it is easier and more useful

to measure the average number 〈r〉 of peers that receive a
given event through the dissemination protocol. To this aim,
we can employ the typical formula for generating functions
〈r〉 = R′(1). In fact, taking the first equation of (11), dif-
ferentiating and evaluating the result for x = 1, and since

r0 = 0, we have R′(x)
∣∣∣
x=1

=
∑

i iri, which is the mean value

related to the distribution of ri coefficients. We already
observed that the coefficients of the introduced generating
functions are probabilities, and thus F (1) =

∑
i fi = 1, and

similarly
−→
F (1) = 1, R(1) = 1,

−→
R (1) = 1. Hence, taking (13)

and differentiating

〈r〉 = R′(1) =
[
F (

−→
R (x)) + xF ′(

−→
R (x))

−→
R ′(x)

]
x=1

= 1 + F ′(1)
−→
R ′(1). (14)

Similarly, from (12),

−→
R ′(1) =

[−→
F (

−→
R (x)) + x

−→
F ′(

−→
R (x))

−→
R ′(x)

]
x=1

= 1 +
−→
F ′(1)

−→
R ′(1). (15)

Thus,
−→
R ′(1) = 1

1−
−→
F ′(1)

. This last equation allows to find

the final formula for 〈r〉,

〈r〉 = 1 +
F ′(1)

1−
−→
F ′(1)

= 1 +
Γ〈p〉2

(1 + Γ)〈p〉 − Γ〈p2〉 . (16)

Now, 〈r〉 is the number of peers that receive the event,
regardless if they are subscribers or simply relay nodes. To
obtain the average number of subscribers 〈s〉 that receive
the event, it suffices to multiply 〈r〉 by the probability that
a peer is a subscriber σ, hence obtaining 〈s〉 = σ〈r〉.

4.4 Percolation Probability
As it is quite typical in complex network theory, it is ac-

tually easier to examine infinite networks rather than just
large ones. The analysis of infinite networks, under con-
ditions similar to those of large scale networks, allows to
understand important peculiarities of the real networks and
on protocols executed by their nodes. For instance, it is pos-
sible to understand if a message can percolate through the

network. This assumption is perfectly reasonable in our sce-
nario, since we consider very large dynamical systems (with
a number of nodes that tends to infinity) where peers know
only their neighbours and manage contents based on local
knowledge about nodes’ subscriptions.

Equation (16) has a divergence when (1 + Γ)〈p〉 = Γ〈p2〉,
which signifies that the event reaches an infinite number of
nodes, i.e. the event percolates through the network. By
looking at the parameters, this situation depends, first, on
the nodes’ connectivity, i.e. the node degree probability dis-
tribution pi. In fact, the degree probability distribution
determines if the overlay has a giant component (i.e. the
largest subset of connected nodes which scales with the net-
work size, and thus has a number of nodes whose limit tends
to ∞), rather than being partitioned into a set of compo-
nents of limited size [7]. The event can be spread to a large
(infinite) number of nodes only when there is such a giant
component; otherwise, the event can be sent to a limited
number of nodes only. Studies exist that allow to under-
stand how to build networks with a giant component [6, 7].

Second, the value of σ has influence on both the number
of subscribers to be reached and on the dissemination of
events. In fact, the higher σ the higher the probability that
a node has some of its neighbours which are subscribers to
a given type of events; these nodes will be receivers of the
event and subsequently they will act as relays for such event.

Third and final, the gossip probability γ determines if the
message event is spread through the network even when
the amount of subscribers for a given event type is small,
i.e. when σ has a very low value. Of course, setting γ = 1 al-
lows to flood the event to the whole component (from which
the event has been originated). This is a fair choice when the
network has a tree-like structure, or when the network has
a very low clustering. Conversely, a low value for γ should
be employed when there are loops in the overlay.

A completely different scenario is concerned with the sit-
uation when the network is formed by limited clusters only
(there is no giant component). In such a case, in fact, the
number of reached nodes does not grow proportionally with
the network size, and a finite number of subscribers might
receive a published event.

5. EXPERIMENTAL RESULTS
This section presents an assessment performed by consid-

ering the analytical model and results obtained through a
simulation of the distributed protocol. The two approaches
provide similar outcomes. In particular, when the theoret-
ical model estimates that an infinite amount of nodes is
reached through the dissemination, simulations show that
a significant portion of the simulated network receives the
events, as expected.

The focus here is on network coverage. Another important
metric to consider is the number of sent messages. In this
sense, the protocol ensures that peers disseminate a given
event at most once. Moreover, the tree-like structure of the
overlay limits that multiple copies of the same event are
received by a peer.

5.1 Theoretical Model
We employed the framework presented in Section 4 to as-

sess the performance of the protocol, based on the over-
lay topology, i.e. node degree distribution, the subscription
probability σ and the gossip probability γ. Figure 1 shows
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Figure 1: Receivers and subscribers: topology based
on a Poisson degree distribution with mean λ = 5.
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the number of nodes receiving an event, spread through
the network, when the unstructured overlay has a topology
based on a Poisson node degree distribution with mean value
λ = 5 (we tested the framework with other λ values, obtain-
ing similar results). Lines in the chart correspond to the
whole number of receivers (i.e. relay nodes and subscribers),
while points correspond to the number of subscribers. Re-
sults are obtained varying the value of σ (on the x-axis),
i.e. the portion of subscribers present in the overlay.
The figure shows that, for each specific γ value, there is a

phase transition, i.e. as σ is varied there is an abrupt incre-
ment on the number of receivers (and subscribers), passing
from a limited value to ∞, i.e. the event percolates through
the network. This phase transition depends on the parame-
ters used to set the distributed system. In fact, the value of
σ not only represents the subscription probability, but it in-
fluences also the event dissemination in the overlay (a node
forwards with probability 1 the event to each of its neigh-
bours that subscribed to that event). Finally, the value of γ
does not change the trend of the curves; basically, the higher
γ the smaller the value of σ to have a transition.
Similar considerations can be made for Figure 2, where the

estimated amount of receivers and subscribers is reported for
a scale-free network with a degree distribution ∼ pλ, with
λ = −3.3. The chart shows that for each curve there is a
phase transition, where the number of receiving nodes passes
from a limited (low) value to an infinite number.

5.2 Simulation
In order to assess the theoretical model proposed in the

paper, we have built a discrete-event simulator mimicking

 0

 100

 200

 300

 400

 500

 0  0.02  0.04  0.06  0.08  0.1  0.12

R
e
c
e
iv

e
rs

 (
#
 N

o
d

e
s
)

σ

Model vs Simulation, Poisson Distribution, λ = 5, γ = 0.1

Theoretical
σ = 0.01, #Peers = 100
σ = 0.01, #Peers = 500

σ = 0.01, #Peers = 1000
σ = 0.01, #Peers = 10000

σ = 0.05, #Peers = 100
σ = 0.05, #Peers = 500

σ = 0.05, #Peers = 1000
σ = 0.05, #Peers = 10000

σ = 0.1, #Peers = 100
σ = 0.1, #Peers = 500

σ = 0.1, #Peers = 1000
σ = 0.1, #Peers = 10000
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a Poisson degree distribution with mean λ = 5.
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Number of receiving nodes obtained through simu-
lation (the model returns an infinite sub-graph).

the presented protocol. The simulator was written in C
code, by employing the GNU Scientific Library. It allows
to test the behavior of a given amount of nodes execut-
ing a publish-subscribe distributed system employing the
explained protocol. In particular, the simulator generates
a random network based on the chosen degree distribution.
Once having assigned a specific target degree to each node,
a random mapping is made so that links are created until
each node has reached its own target degree. During the ini-
tialization phase, for each node a random choice was made,
in order to set that node as a subscriber of the event type
or not, based on the probability σ.

We varied the network topology, the number of nodes and
statistical parameters characterizing the network degree dis-
tribution. For each network setting, we repeated the sim-
ulation using a corpus of 20 different randomly generated
networks. For each network, we analyzed the dissemination
of 400 events published by random nodes. In the results
that follow, for each generated network we show the aver-
age number of receiving nodes, i.e. subscribers and relays;
this number allows to understand if the distributed protocol
is able to disseminate the event through the unstructured
network, using the presented protocol.

5.2.1 Poisson Degree Distribution
Here, we show results for networks generated through a

Poisson degree distribution. Figure 3 shows results obtained
from simulation and the theoretical model. We simulated
different corpuses of networks, varying the number of nodes
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and the value of the gossip probability γ. Each point in the
chart corresponds to the average number of receivers for a
simulated network. The line corresponds to the theoretical
value measured using equation (16). All results from the
simulations lie near the theoretical value, regardless on the
considered number of simulated network nodes. Hence, the
model captures the behavior of the distributed protocol.
Figure 4 shows results obtained in our simulations when

σ = 0.1 while varying γ, above the phase transition. Accord-
ing to the model, the system is above the phase transition.
Hence, assuming an infinite number of nodes in the network,
an infinite number of receivers is reached. As concerns sim-
ulations, instead, we expect that a non-negligible portion of
nodes is reached during the dissemination of an event. Of
course, since the dissemination is based on rather low val-
ues of γ, σ probabilities, and since the network clustering of
these considered networks is quite low (we employ a ran-
dom attachment process to build links in the network [7]),
it is unlikely that all network nodes receive the disseminated
event. In fact, because of the tree-like structure of the net,
every time we decide not to exploit a link, we might cut
away some branch (and consequently some sub-graph) of
the overlay. Results confirm our outlook. A non-negligible
portion of nodes is reached in each configuration. Yet, the
whole overlay is not covered completely. The amount of the
reached nodes increases with the varied parameter γ. Of
course, the entire net (or at least, the component to which
the node belongs) can be reached by flooding the event.
Similar results were obtained for different networks built

varying the statistical parameters of the random graph and
the values of γ, σ. In substance, all this means that the
protocol is able to spread a given event in the network in
random graphs with Poisson degree distributions.

5.2.2 Scale-Free Networks
Scale free networks gained a lot of interest in recent years.

These networks are characterized by a degree distribution
following a power law. The presence of hubs, i.e. nodes with
degrees higher than the average, has an important impact
on the connectivity of the net. The interest on scale-free
networks in this work relates to the fact that several P2P
systems are indeed scale-free networks [3, 7].
To build scale-free networks, our simulator implements the

construction method proposed in [1]. It builds a network
of fixed size, characterized by two parameters a, b. More

specifically, the number of nodes y which have a degree x
satisfies log y = a − b log x, i.e. y = b ea

xb c. Thus, the total

number of nodes is N =
∑be

a
b c

x=1
ea

xb , being be
a
b c the maxi-

mum possible degree of the network, since it must be that
0 ≤ log y = a− b log x. Once the number of nodes and their
degrees have been determined, edges are randomly created
among nodes until nodes reach their desired degrees.

As made above for random graphs, Figure 5 shows results
obtained in our simulations when we employ a scale-free
network topology, with σ = 0.1 while varying γ, above the
phase transition (similar tests were performed varying σ and
keeping γ fixed, obtaining similar results). Again, based on
the model an infinite number of receivers is reached (as-
suming a network of infinite size). From the simulations, a
non-negligible portion of nodes is reached during the dissem-
ination of events, that increases together with the γ param-
eter. Indeed, it is interesting to observe that when γ = 0.6,
σ = 0.1 almost all network peers receive the event during
the dissemination, and thus, almost all subscribers receive
the published events. In the scenarios reported in the pic-
tures, in fact, we employed scale-free networks generated
through the choice of a = 6, b = 1, resulting in networks
composed of 2482 nodes. In this case, simulation results
provide average results above 2200 nodes. Again, this result
is in accordance with the outcomes from the model, stating
that an infinite number of nodes is reached with these set-
tings. We performed simulations with different networks of
different sizes, obtaining similar results (not reported here).

6. CONCLUSIONS
This paper analyzed the performance of an unstructured

P2P overlay network that exploits a very simple dissemina-
tion strategy to build P2P publish-subscribe systems. Re-
sults show that by tuning the gossip probability it is pos-
sible to spread contents through the overlay, without the
need to resorting to sophisticated dissemination strategies
built on top of costly structured distributed systems. This
is true when networks are large in size and the number of
subscribers is not negligible.
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