
Decoupling Content Management
Szabolcs Grünwald

Knowledge and Media Technologies
Salzburg Research
Salzburg, Austria

+43 662 2288 301

sgruenwald@salzburgresearch.at

Henri Bergius
Nemein

Helsinki, Finland
+358201986032

henri.bergius@nemein.com

ABSTRACT
Traditional content management systems (CMS) are following a
monolithic architecture. If they wouldn't, one could exchange UI
components much easier and CMS developers could share many
of the front-end components, also divide the effort and multiply
quality. Our approach to decouple content management is to use
RDFa enhanced templating and Backbone.js as a mid-layer to
instantiate a rich editor and other interactive widgets when the
user would like to edit the content. We show components and
prototypes in development.

Keywords
Content Management Systems, JavaScript, Semantic
Technologies

1. INTRODUCTION: Decoupling content
management

Traditional content management systems are following a
monolithic architecture. Just to make a website editable one has to
accept the web framework imposed by the system, the templating
engine used by the CMS, and the editing tools used by the
system. Requirements for changes in the user interface often
result in rewriting the whole website and sometimes also in
migrating the content between different storage systems.

Here is how a traditional CMS looks like:

Fig. 1: Monolithic approach

Being a monolithic block the CMS provides content storage,
routing, templating, editing tools, and other content management
functionality. The CMS is probably also tied to a particular
relational database for content storage. Users wanting to utilize a
more attractive HTML5 rich text editor like Aloha1, or a different
templating engine, or maybe a NoSQL storage back-end one
would have to convince the whole CMS project or vendor to
switch over.

1 Aloha editor - http://aloha-editor.org/

A much better approach would be something like the following:

Fig. 2: Decoupled approach

In this scenario, the concept of content management is decoupled.
There is a content repository that manages content models and
how to store them. This could be something like JCR2, PHPCR3,
CouchDB4 or Midgard25. The web framework is responsible for
handling business logic and matching URL requests to particular
content to generate corresponding web pages. And finally, the
web editing tool provides an interface for managing contents of
the web pages. This includes functionalities like rich text editing,
work flows and image handling.

The web editing tools have traditionally been part of the web
framework. The framework serving forms and tool bars to the
user as part of the generated web pages. But with HTML5 it is
possible to avoid forms and just make pages editable as they are.

Fig. 3: Decoupled information flow

2 Jackrabbit - http://jackrabbit.apache.org/
3 PHPCR - http://phpcr.github.com/
4 CouchDB - http://couchdb.apache.org/
5 Midgard2 - http://www.midgard-project.org/midgard2/

http://www.midgard-project.org/midgard2/
http://couchdb.apache.org/
http://phpcr.github.com/
http://jackrabbit.apache.org/
http://aloha-editor.org/
mailto:henri.bergius@nemein.com
mailto:sgruenwald@salzburgresearch.at

In the next sections we introduce our approach to solve the
highlighted problem above. All the introduced components are
published under a permissive open source license6.

2. VIE – RDFa Backbone bridge
As part of the EU-funded IKS project7 we developed VIE8 as a
JavaScript utility library building the bridge between any
semantically annotated content and the user interaction layer. In
this chapter we explain three aspects of the VIE library that are
relevant to understand the applications introduced in the rest of
this paper.

2.1 Common representation of content on
HTML level

First of all, the web editing tool has to understand the content
structure of the page, what parts of the page should be editable,
and what the relations between the editable parts are. If there is a
list of news items for instance, the tool needs to understand that it
is a list so users can add new news items. The easy way of
accomplishing this is to add some semantic RDFa9 annotations to
the HTML pages.

Using RDFa is relatively complex for everyday development
tasks, but VIE hides complexity from the Javascript developer.
The following example shows the use of RDFa annotations to
provide the necessary information to make a blog entry editable.
<article id="myarticle"

typeof="http://rdfs.org/sioc/ns#Post"
about="http://example.net/blog/news_item">
<h1 property="dcterms:title">

News item title
</h1>
<div property="sioc:content">

News item contents
</div>

</article>

Here we get all the necessary information for making a blog entry
editable:

• typeof tells us the type of the editable object. On typical
CMSs this would map to a content model or a database
table

• about gives us the identifier of a particular object. On
typical CMSs this would be the object identifier or
database row primary key

• property ties a particular HTML element to a property
of the content object. On a CMS this could be a
database column

VIE finds and interprets embedded meta-data and makes it
available to the JavaScript level. As a side effect, RDFa also
makes pages more understandable to search engines and other
semantic tools. So the annotations are not just needed for UI, but
also for search engine optimization.10

6 MIT license - http://www.opensource.org/licenses/mit-
license.php

7 IKS Project - http://www.iks-project.eu
8 VIE – Vienna IKS Editables – http://viejs.org/
9 Resource Description Framework – in – attributes –

http://en.wikipedia.org/wiki/RDFa
10 http://www.seomoz.org/blog/schema-examples

2.2 Common representation of content on
JavaScript level

Having contents of a page described via RDFa makes it possible
to extract the content model of the CMS into a JavaScript model.
Backbone.js11 provides a convenient library for managing the
RDF entities and their RDFa views:

Backbone supplies structure to JavaScript-heavy
applications by providing models with key-value
binding and custom events, collections with a rich
API of enumerable functions, views with
declarative event handling, and connects it all to
your existing application over a RESTful JSON
interface.

With Backbone, the content extracted from the RDFa-annotated
HTML page is accessible via JavaScript. Consider for example:
v = new VIE();
v.use(new v.RdfaService());
v.load({

element: jQuery('#myarticle')})
.from('rdfa').execute()
.success(function(entities) {

_.forEach(entities, function(entity) {
entity.set({

'dcterms:title': 'Hello, world'
});
entity.save(null, {

success: function(savedModel, response) {
alert("Your article '" +
savedModel.get('dcterms:title') +
"' was saved to server");

}
});

})
console.log("We got " + entities.length +
" editable objects from the page");

});

In this example we use VIE to read RDFa from the article. As is
apparent, interaction with an entity and an editable field doesn't
require to know anything about the HTML structure.

Another thing we can see in the example above is the usage of
VIE's RdfaService to read RDF triples12 from the HTML. This
leads us to the third important aspect of our VIE design.

11 http://documentcloud.github.com/backbone/
12 RDF – Resource Description Framework –

http://en.wikipedia.org/wiki/Resource_Description_Framework

http://en.wikipedia.org/wiki/Resource_Description_Framework
http://documentcloud.github.com/backbone/
http://www.seomoz.org/blog/schema-examples
http://example.net/blog/news_item
http://rdfs.org/sioc/ns#Post
http://en.wikipedia.org/wiki/RDFa
http://viejs.org/
http://www.iks-project.eu/
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php

2.3 Service architecture
Fig. 4: VIE architecture

VIE has a plug-in architecture to make it modular and easy to
extend. This gives us an elegant way to communicate with RDFa
-annotated HTML, but also with any RESTful back-end, and
RDF-based back-end components like Apache Stanbol13 or
dbPedia14.

3. Hallo Editor
To show the flexibility of the concept we created a simple
HTML5 editor. The following screen-shot shows it as part of the
Symfony2 CMS Sandbox.

Fig. 5: Hallo editor screen shot

As part of the editing experience, tags and images are
recommended based on the edited text. The recommendations are
provided by Stanbol Enhancer endpoint which can find keywords
and entities mentioned in the text being analyzed. In 4.2
Annotate.js will make use of the same feature but for highlighting
the mentioned entities directly in the text.

4. VIE Widgets
To support the web developers with a tool set allowing an
enriched user experience for future web applications, we
developed a set of generic widgets, just like jQuery UI15 widgets

13 Apache Stanbol Incubator - http://incubator.apache.org/stanbol/
14 DBPedia - http://dbpedia.org/About

make it fairly easy to instantiate an accordion widget in a few
lines of code.16

4.1 VIE.autocomplete
VIE auto-complete17 uses the VIE.find service method to make
auto-complete suggestions. The VIE.find method can query
different back-end or front-end data sources. Our implementation
uses for example the Apache Stanbol Entityhub, querying a local
dbPedia index.

Fig. 6: VIE autocomplete screen shot

4.2 Annotate.js
The annotate.js18 widget uses the Apache Stanbol Enhancer
endpoint to suggest RDFa enhancements of the edited content,
just like a spell checker would suggest corrections. When the user
accepts a recommendation, new RDFa meta-data is written in the
HTML.

Fig. 7: autocomplete.js widget screen shot

4.3 Create UI
Create UI is a “web editing interface for any CMS”19. It finds the
parts of an HTML that can be interacted with and instantiates the
appropriate editing widget for them, e.g. different editing widgets
are used for the title and for the body of a blog post. Create UI
supports the following functions:

• Managing collections of content (add, remove)
• Local, in-browser storage and retrieval of unsaved content
• Adaptable connector for communicating with the back-end

system
• Running work flows (approval, etc.) for content items
• Browsing and reverting content history

15 Jquery UI - http://jqueryui.com/
16 Jquery UI Demos, Accordion -

http://jqueryui.com/demos/accordion/
17 VIE autocomplete -

https://github.com/szabyg/VIE.autocomplete
18 Annotate.js - https://github.com/szabyg/annotate.js
19 Create UI - https://github.com/bergie/create

https://github.com/bergie/create
https://github.com/szabyg/annotate.js
https://github.com/szabyg/VIE.autocomplete
http://jqueryui.com/demos/accordion/
http://jqueryui.com/
http://dbpedia.org/About
http://incubator.apache.org/stanbol/

Fig. 8: Create UI, change to editable mode, screen shot

The screen shot above (Fig. 8.) shows different parts of an HTML
becoming editable on clicking the edit button of the Create tool
bar.

4.4 Annotation bookmarklet
The annotation bookmarklet20 makes use of the annotate.js widget
and finds images for the selected persons, places and
organizations. The bookmarklet can be applied to any web page to
analyze and extend user experience.

Fig. 9: Annotation bookmarklet screen shot

20 Annotation bookmarklet - http://szabyg.github.com/vie-
annotation-bookmarklet/

5. Reference implementations
User interaction is only a half of what needs to be done for truly
decoupled content management - you also need to decouple
content storage from the delivery and business logic layer. The
Java Content Repository specification (JCR) is achieves this, and
is quite widely adopted in the Java-based CMS world. There is
also an effort to bring similar functionality to the PHP space via
PHPCR, a scripting implementation of JCR.

Some Content Management Systems have already embraced the
decoupling approach explained in this paper. Some
demonstrations of these include:

• Symfony CMF with Create 21

• OpenCMS with VIE 22

• Pisano Package manager with Annotate.js 23

6. References
[1] Bergius, H.: Decoupling Content Management, 2011,

http://bergie.iki.fi/blog/decoupling_content_management/

[2] Bergius, H.; Grünwald, S.; Germesin, S.: VIE
documentation, 2011, https://github.com/bergie/VIE

[3] Sporny, M.: An Uber-comparison of RDFa, Microdata and
Microformats, 2011, http://manu.sporny.org/2011/uber-
comparison-rdfa-md-uf/

[4] Bergius, H. et al: Hallo Editor documentation, 2011,
https://github.com/bergie/hallo

[5] Grünwald, S.: VIE autocomplete documentation, 2011,
https://github.com/szabyg/VIE.autocomplete

[6] Buchmann, D.; Smith, L. et al: CMF sandbox IKS branch,
2011, https://github.com/liip/cmf-sandbox/tree/iks

[7] Germesin, S.: image search widget, 2011,
https://github.com/IKS/VIEwidgets/tree/master/widgets/imag
e_search

21Symfony 2 CMF - http://blog.iks-project.eu/semantic-enhanced-
cmf-editor-now-available/
22 OpenCMS demo - http://youtu.be/21QSPSKPs6I
23 Pisano package manager screencast -

http://youtu.be/GcH5OHsClRM

https://github.com/IKS/VIEwidgets/tree/master/widgets/image_search
https://github.com/IKS/VIEwidgets/tree/master/widgets/image_search
https://github.com/liip/cmf-sandbox/tree/iks
https://github.com/szabyg/VIE.autocomplete
https://github.com/bergie/hallo
http://manu.sporny.org/2011/uber-comparison-rdfa-md-uf/
http://manu.sporny.org/2011/uber-comparison-rdfa-md-uf/
https://github.com/bergie/VIE
http://bergie.iki.fi/blog/decoupling_content_management/
http://youtu.be/GcH5OHsClRM
http://youtu.be/21QSPSKPs6I
http://blog.iks-project.eu/semantic-enhanced-cmf-editor-now-available/
http://blog.iks-project.eu/semantic-enhanced-cmf-editor-now-available/
http://szabyg.github.com/vie-annotation-bookmarklet/
http://szabyg.github.com/vie-annotation-bookmarklet/

	1. INTRODUCTION: Decoupling content management
	2. VIE – RDFa Backbone bridge
	2.1 Common representation of content on HTML level
	2.2 Common representation of content on JavaScript level
	2.3 Service architecture

	3. Hallo Editor
	4. VIE Widgets
	4.1 VIE.autocomplete
	4.2 Annotate.js
	4.3 Create UI
	4.4 Annotation bookmarklet

	5. Reference implementations
	6. References

