

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

Better Web Development with WebKit Remote Debugging
Ashutosh Jagdish Sharma

Senior Computer Scientist (Web Platform & Authoring)
Adobe Systems Inc.

I-1A Sector 25A
NOIDA - 201301, India

+91-9958797592

ashutosh@adobe.com

ABSTRACT
The WebKit Remote Debugging API can be used to build custom
tools, such as Web Development IDEs to aid in web design and
development. In this presentation, source code walkthroughs and
demos are presented to highlight the power of this API and show
how it can be used in one’s own tools - 1) Pausing the debugger
when an uncaught exception is thrown, 2) Inspecting the computed
style of a node that is visually selected by the user. Developers are
encouraged to create their own tools based on this API.

Keywords
WebKit, Debugging, Remote Debugging, Chrome, Chromium,
Development Tool, Web Development, Web Design.

1. INTRODUCTION
The WebKit Remote Debugging API is extremely powerful in
helping developers inspect, modify and measure metrics on web
pages and applications. The API is currently supported by the
Chrome and Chromium web browsers and the Web Inspector
developer tool in these browsers makes use of it. Third-party tools
can also use the API, even when the third-party code lives in a
separate process.

Tutorials and documentation available about the API have been
scarce. The examples in this presentation should help remedy this
by demonstrating how the API can be used in one’s own tools.

2. REMOTE DEBUGGING PROTOCOL
The WebKit Remote Debugging Protocol is based on the JSON-
RPC 2.0 specification. With remote debugging enabled, the
browser, that displays the page being debugged, acts as a server
and allows a client (such as a web development IDE) to interact
with the page and debug it. The client sends asynchronous requests
that the server responds to over a websocket. The protocol is
specified by Inspector.json [1], a file in WebKit’s source code.

The entire API surface is divided into several categories (called
domains). Each domain contains [2]:

• commands to allow clients to send requests to the browser:

Example: DOM.querySelectorAll is a command that requests
the set of nodes that match a given selector

• events that are sent from the server to the client:

Example: DOM.childNodeRemoved is an event dispatched when
a child node is removed from its parent

In addition to being used for asynchronous notifications, events are
also used as responses to some commands (e.g. when requested, the
child nodes for a given parent node are sent back as events).

The following domains in the WebKit Remote Debugging Protocol
version 1.0 are supported by the current versions of
Chrome/Chromium (version 17):

• CSS - CSS read/write operations

• Console - Interaction with the JavaScript console

• DOM - DOM read/write operations

• DOMDebugger - Breakpoints on DOM events and operations

• Debugger - JavaScript debugging capabilities

• Network - Tracking network activities of the page

• Page - Actions and events related to the inspected page

• Runtime - JavaScript runtime

• Timeline - Instrumentation records for the page run-time

In addition to these, there are several domains (ApplicationCache,
DOMStorage, Database, FileSystem, IndexedDB, Inspector,
Memory, Profiler, Worker) that are marked as hidden in the
protocol and do not show up in Google’s official online
documentation [3]. They are not guaranteed to be backwards-
compatible, and are internally used by Chrome’s Web Inspector
developer tool. Some visible domains also have specific commands
and events that are marked as hidden.

The network-based WebKit Remote Debugging Protocol also
enables tools that use remote debugging API to run on an entirely
different machine from that of the browser being debugged. This
can be very useful for mobile devices that have a limited screen
area. However, mobile implementations of WebKit do not currently
support the protocol, but that’s likely to change in the future.

3. DEVELOPMENT SETUP
3.1 Browser Setup
A stable build of Chrome or Chromium can be used to access the
WebKit Remote Debugging functionality. A Dev Channel build of
Chrome [4] or a nightly build of Chromium [5] can also be used.
Chrome/Chromium acts as a server responding to remote
debugging clients over websockets. To launch Chrome in this
mode, an additional argument needs to be specified when invoking
it:

{Path to Chrome} --remote-debugging-port=9222

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

This causes Chrome to listen on port 9222 (on localhost) for
incoming connections from remote debugging clients [6].

3.2 Connecting to the Browser
With the browser listening for incoming connections, one can
navigate to http://localhost:9222/ to see a list of pages that can be
remotely inspected and debugged. This is an HTML-rendered list
of pages currently open in the browser. To lookup the websocket
URL to debug a specific page, one can navigate to
http://localhost:9222/json. The entry for an open webpage here has
the following properties:

• devtoolsFrontendUrl

• faviconUrl

• thumbnailUrl

• title

• url

• webSocketDebuggerUrl

Of interest to us are url and webSocketDebuggerUrl, which
specify the URL of the web page and that for the websocket for
inspecting/debugging the page remotely, respectively. Do note that
remote debugging connections are not available while the
browser’s Web Inspector is open on a given page.

Instead of navigating to http://localhost:9222/json in the browser,
one can also fetch that URL over HTTP in one’s own standalone
application (such as a web development IDE) and fetch details
about the various inspectable web pages.

4. CODE WALKTHROUGHS
For our demos, we’ll have a remote debugging client running inside
the browser itself, to minimize the required setup. Do note that one
can implement a client in a separate process/application as well –
e.g. to integrate debugging functionality in one’s web development
IDE.

For our demos, one can navigate to http://localhost:9222/json and
then invoke a bookmarklet [7] for each of the code walkthroughs
that follow. A bookmarklet is saved as a bookmark (e.g. in the
Bookmarks toolbar in the browser) and essentially runs a
JavaScript snippet in the context of the current page. To invoke its
functionality, one needs to launch the bookmark after navigating to
the URL http://localhost:9222/json. The bookmarklet for each
demo has the following code, with {path-to-javascript-file.js}
replaced with the corresponding URL:

Snippet 1. Code for remote debugging client bookmarklets

javascript:(function(){
 function loadScript(scriptURL) {
 var scriptElem = document.createElement("SCRIPT");
 scriptElem.setAttribute("language", "JavaScript");
 scriptElem.setAttribute("src", scriptURL);
 document.body.appendChild(scriptElem);
 }
 loadScript("{path-to-javascript-file.js}");
})()

In the code walkthroughs that follow, each bookmarklet iterates
over the various entries at http://localhost:9222/json (in the init

function), transforming each into a clickable HTML element, so
that the functionality can be invoked on a specific page. (In the case
of a standalone remote debugging client, one can use the URL
specified by the webSocketDebuggerUrl property for
inspecting/debugging a page.) While iterating, entries for the page
http://localhost:9222/json itself and any Web Inspector windows
that are currently open in the browser are ignored.

The tools that follow have source code that corresponds to and
works with builds of Chrome or Chromium that support version
1.0 of the WebKit Remote Debugging Protocol. Chromium Build
127895 [8] is used for the live demos.

Each of the tools that follow has a helper class (Debugger) that
manages the connection with the remote debugging server. This
class utilizes jQuery’s Deferred functionality [9] to manage and
chain asynchronous callbacks.

4.1 Catching Uncaught JavaScript Exceptions
This tool will enable the user to receive alerts when uncaught
exceptions are thrown by a target page. One will also be able to
obtain the call stack for when the exception is thrown.

One will need to add a new bookmarklet that has the code from
Snippet 1 with {path-to-javascript-file.js} replaced with the URL
http://marple.host.adobe.com/webkit/demo/exceptions.js [10].

After navigating to http://localhost:9222/json and invoking the
bookmarklet, one can select a target page by clicking on its entry.
This calls process() which connects to the target page’s
websocketDebuggerUrl, and enables the JavaScript Debugger with
the Debugger.enable command in the Debugger domain. When
the Debugger is enabled, it is instructed to pause on uncaught
exceptions with the Debugger.setPauseOnExceptions method:

Snippet 2. Pausing on uncaught exceptions

function process(webSocketDebuggerUrl, pageUrl) {
 var dbg = Debugger.getDebugger(webSocketDebuggerUrl);
 dbg.connect().done(function() {
 dbg.sendCommand("Debugger.enable").done(function() {
 dbg.sendCommand("Debugger.setPauseOnExceptions",

{ state: "uncaught" });
 });
 });
}

When an exception is thrown in the target page’s JavaScript and is
not caught therein, a Debugger.paused event is dispatched by the
browser. This is received by the client which then extracts
information about the exception and displays the callstack at that
time (Snippet 3). In the client, the event is received as a message on
the debugger websocket – the JSON data packet will have a
method property with the value Debugger.paused.

In order to avoid completely halting the target page, we resume the
Debugger with the Debugger.resume command after extracting
appropriate information.

To try the bookmarklet out, one can use the sample web page at
http://marple.host.adobe.com/webkit/demo/exception.html [11].
This page has a button which, when clicked, invokes JavaScript
code that refers to an undefined variable, thereby causing an
exception to be thrown.

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

Snippet 3. Obtaining information about an uncaught exception

if(json.params.reason === "exception") {
 var errorName = json.params.data.className;
 var callFrames = json.params.callFrames;
 var callStack = "";
 for(var i = callFrames.length - 1; i >= 0; i--) {
 if(callStack !== "")
 callStack += " -> ";
 callStack += callFrames[i].functionName + "()";
 }
 alert("Exception: " + errorName + "\n" + "Callstack: " +

callStack);
 self.sendCommand("Debugger.resume");
}

4.2 Inspecting the Computed Style for a
Visually-Selected Node
This tool will enable a user to visually select a node on the target
page and then inspect its computed style.

One will need to add a new bookmarklet that has the code from
Snippet 1 with {path-to-javascript-file.js} replaced with the URL
http://marple.host.adobe.com/webkit/demo/computedStyle.js [12].

After navigating to http://localhost:9222/json and invoking the
bookmarklet, one can select a target page by clicking on its entry.
This calls process() which connects to the target page’s
websocketDebuggerUrl, and enables events in the Inspector
domain with the Inspector.enable command. The browser is then
instructed to enter a mode where the user can move the mouse
cursor over elements to highlight them and see their details, and
then select one by clicking on it. This is achieved with the
DOM.setInspectModeEnabled command in the DOM domain.
When issuing this command, one can control the highlighting that
the browser will use on elements. When the user selects a node on
the target page, the remote debugging client receives an
Inspector.inspect event with a reference to a runtime object
corresponding to the node. An additional command
DOM.getDocument (at the beginning of the Snippet 4) is required
to prepare the DOM to be able to resolve this runtime object to its
actual DOM node.

Snippet 4. Visually selecting an element on the target page

dbg.sendCommand("DOM.getDocument")
.done(function(response) {
 dbg.sendCommand("Inspector.enable")
 .done(function(response) {
 var config = {
 showInfo: true,
 contentColor: { r: 255, g: 0, b: 0, a: 0.5 },
 paddingColor: { r: 255, g: 204, b: 153, a: 0.5 },
 marginColor: { r: 255, g: 255, b: 204, a: 0.5 }
 };
 dbg.sendCommand("DOM.setInspectModeEnabled", {

enabled: true, highlightConfig: config });
 });
});

The resolution of the runtime object to a DOM node is achieved
with the DOM.requestNode command (Snippet 5).

Snippet 5. Handler for the Inspect.inspect event

self.sendCommand("DOM.requestNode", { objectId: objectId })
.done(function(response) {
 var nodeId = response.result.nodeId;
 self.sendCommand("CSS.getComputedStyleForNode", {

nodeId: nodeId }).done(function(response) {
 var result = response.result.computedStyle;
 var computedStyle = {};
 for(var i = 0; i < result.length; i++) {
 var s = result[i];
 computedStyle[s["name"]] = s["value"];
 }

 alert("margin-bottom: " + computedStyle["margin-
bottom"]);
 });
});

Once the DOM node is resolved, the command
CSS.getComputedStyleForNode is issued to fetch information
about computed style of the selected node. Similarly,
CSS.getInlineStylesForNode can be used to fetch information
about the inline styles of the selected node.

5. CONCLUSION
In this presentation, we have only scratched the surface of the
WebKit Remote Debugging API. It has a large set of commands
and events that define a very clean interface with the browser. This
API surface enables the Web Inspector (Dev Tools Frontend) in the
Chrome browser to be implemented using the remote debugging
API.

The support for the WebSocket API in modern browsers makes it
possible and easy to create tools that use this powerful API and run
within the browser itself, without requiring one to create complex
native applications for this purpose.

Chrome also exposes the remote debugging protocol to browser
extensions via the chrome.debugger extension API [13].

6. OTHER BROWSERS
Similar to WebKit’s Web Inspector, Firebug [14] is a popular
Firefox extension that provides similar functionality and is itself
extensible. Crossfire [15] is a Firebug extension which has a
similar JSON protocol to allow remote debugging clients to
connect to Firebug.

7. ACKNOWLEDGMENTS
My thanks to the WebKit team that developed the WebKit Remote
Debugging Protocol, and to Narciso Jaramillo (@rictus on Twitter)
who wrote the Debugger helper class that manages the remote
debugging connections.

8. REFERENCES
[1] JSON schema for the remote debugging protocol.

http://trac.webkit.org/browser/trunk/Source/WebCore/inspect
or/Inspector.json

http://trac.webkit.org/browser/trunk/Source/WebCore/inspector/Inspector.json
http://trac.webkit.org/browser/trunk/Source/WebCore/inspector/Inspector.json

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

[2] Chrome Developer Tools: Remote Debugging.
http://code.google.com/chrome/devtools/docs/remote-
debugging.html

[3] Remote Debugging Protocol 1.0

http://code.google.com/chrome/devtools/docs/protocol/1.0/ind
ex.html

[4] Chrome’s Dev Channel builds

http://www.chromium.org/getting-involved/dev-channel

[5] Nightly Chromium builds

http://commondatastorage.googleapis.com/chromium-
browser-continuous/index.html?path=Mac/

http://commondatastorage.googleapis.com/chromium-
browser-continuous/index.html?path=Win/

http://commondatastorage.googleapis.com/chromium-
browser-continuous/index.html?path=Linux/

[6] WebKit Remote Debugging (WebKit Blog).
http://www.webkit.org/blog/1620/webkit-remote-debugging/

[7] Bookmarklet

http://en.wikipedia.org/wiki/Bookmarklet

[8] Chromium Build 127895 used for the live demos

http://commondatastorage.googleapis.com/chromium-
browser-continuous/Mac/127895/chrome-mac.zip

http://commondatastorage.googleapis.com/chromium-
browser-continuous/Win/127895/chrome-win32.zip

http://commondatastorage.googleapis.com/chromium-
browser-continuous/Linux/127895/chrome-linux.zip

[9] jQuery’s Deferred Object

http://api.jquery.com/category/deferred-object/

[10] Source code for the tool to alert the user on uncaught
JavaScript exceptions

http://marple.host.adobe.com/webkit/demo/exceptions.js

[11] Sample web page which has code that throws an uncaught
exception
http://marple.host.adobe.com/webkit/demo/exception.html

[12] Source code for the tool to inspect the computed style of a
visually-selected node

http://marple.host.adobe.com/webkit/demo/computedStyle.js

[13] Chrome extension API to expose the remote debugging
protocol to browser extensions

http://code.google.com/chrome/extensions/trunk/debugger.ht
ml

[14] Firebug

http://getfirebug.com/whatisfirebug

[15] Crossfire

http://getfirebug.com/wiki/index.php/Crossfire

http://code.google.com/chrome/devtools/docs/remote-debugging.html
http://code.google.com/chrome/devtools/docs/remote-debugging.html
http://code.google.com/chrome/devtools/docs/protocol/1.0/index.html
http://code.google.com/chrome/devtools/docs/protocol/1.0/index.html
http://www.chromium.org/getting-involved/dev-channel
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?path=Mac/
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?path=Mac/
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?path=Win/
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?path=Win/
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?path=Linux/
http://commondatastorage.googleapis.com/chromium-browser-continuous/index.html?path=Linux/
http://www.webkit.org/blog/1620/webkit-remote-debugging/
http://en.wikipedia.org/wiki/Bookmarklet
http://commondatastorage.googleapis.com/chromium-browser-continuous/Mac/127895/chrome-mac.zip
http://commondatastorage.googleapis.com/chromium-browser-continuous/Mac/127895/chrome-mac.zip
http://commondatastorage.googleapis.com/chromium-browser-continuous/Win/127895/chrome-win32.zip
http://commondatastorage.googleapis.com/chromium-browser-continuous/Win/127895/chrome-win32.zip
http://commondatastorage.googleapis.com/chromium-browser-continuous/Linux/127895/chrome-linux.zip
http://commondatastorage.googleapis.com/chromium-browser-continuous/Linux/127895/chrome-linux.zip
http://api.jquery.com/category/deferred-object/
http://marple.host.adobe.com/webkit/demo/exceptions.js
http://marple.host.adobe.com/webkit/demo/exception.html
http://marple.host.adobe.com/webkit/demo/computedStyle.js
http://code.google.com/chrome/extensions/trunk/debugger.html
http://code.google.com/chrome/extensions/trunk/debugger.html
http://getfirebug.com/whatisfirebug
http://getfirebug.com/wiki/index.php/Crossfire

	1. INTRODUCTION
	2. REMOTE DEBUGGING PROTOCOL
	3. DEVELOPMENT SETUP
	3.1 Browser Setup
	3.2 Connecting to the Browser

	4. CODE WALKTHROUGHS
	4.1 Catching Uncaught JavaScript Exceptions
	4.2 Inspecting the Computed Style for a Visually-Selected Node

	5. CONCLUSION
	6. OTHER BROWSERS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

