
API Blender: A Uniform Interface to Social Platform APIs

Georges Gouriten
Institut Télécom; Télécom Paristech; CNRS LTCI

46, rue Barrault, Paris, France
georges.gouriten@telecom-paristech.fr

Pierre Senellart
Institut Télécom; Télécom Paristech; CNRS LTCI

46, rue Barrault, Paris, France
pierre.senellart@telecom-paristech.fr

ABSTRACT
With the growing success of the social Web, most Web devel-
opers have to interact with at least one social Web platform,
which implies studying the related API specifications. These
are often only informally described, may contain errors, lack
harmonization, and generally speaking make the developer’s
work difficult. Most attempts to solve this problem, propos-
ing formal description languages for Web service APIs, have
had limited success outside of B2B applications; we believe it
is due to their top-down nature. In addition, a programmer
dealing with one or several of these APIs has to deal with a
number of related tasks such as data integration, requests
chaining, or policy management, that are cumbersome to
implement. Inspired by the SPORE project, we present
API Blender, an open-source solution to describe, interact
with, and integrate the most common social Web APIs. In
this perspective, we first introduce two new lightweight de-
scription formats for requests and services and demonstrate
their relevance with respect to current platform APIs. We
present our Python implementation of API Blender and its
features regarding authentication, policy management and
multi-platform data integration.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Infor-
mation Services—Web-based services; D.3.2 [Programming
Languages]: Language Classifications—Python

General Terms
Design, Standardization

Keywords
social Web, API, REST, data integration

1. INTRODUCTION
Interacting with platforms like Facebook, Youtube, Twit-

ter, Flickr, or Google+ becomes an important part of many

Copyright is held by the author/owner(s).
WWW 2012 Developer Track, April 18–20, 2012, Lyon, France.

software projects, whether it is for authentication purposes,
to collect information about a user, to present mash-ups of
popular social Web data, or for a myriad of other reasons.
Our perspective comes from the need of archiving important
social data for preservation purposes.1 Regular Web archives,
such as those built by the Internet Archive2, often include
content from or pointers to social Web platforms but do
not benefit from API data. As a consequence, the archives
are either partial – Facebook disallows generic crawling of
its public pages – or lack some extra information that the
API can provide, for instance extracted entities on Twitter.
Designing an archival crawler for the social Web requires
interfacing with the multiple social Web APIs, as well as
respecting the policies imposed by these services, such as
limiting the number of requests per hour.

Many projects thus involve numerous interactions with
various social platforms, sometimes with complex logics such
as getting the social graph till the third rank of users having
mentioned a specific keyword. Understanding the related
API specifications can be challenging. There is no de facto
standard to describe them and they can contain mistakes or
approximations. There is no clear specification, for instance,
of how many requests per hour are allowed on the Twitter
search API. For the most popular platforms, specific language
libraries sometimes exist but they often require the same
learning phase.

Having a unified description of the different social Web
APIs is a technical challenge. An early step was taken
with WSDL [2], a Web Services Description Language stan-
dardized by the W3C. WSDL has been heavily used in the
industry and is at the core of many service-oriented software
projects [5]. However, most popular social platforms includ-
ing Facebook, Twitter, or Google+ and many other Web
services are not currently offering any WSDL description of
their API and do not seem to have any plans to do so. The
reasons are manifold: WSDL-based services are often con-
sidered heavy machinery for such lightweight interfaces [1],
WSDL has historically focused on SOAP message exchanges
rather than on RESTful APIs though it can now express both
[10], WSDL has no support for important API metadata such
as policy management or the description of a sequence of
service calls3. In reaction to WSDL, some other approaches
to Web services description have been proposed, a prime

1ARCOMEM project, http://www.arcomem.eu/
2http://www.archive.org/
3BPEL [8] is typically used in B2B projects that need service
orchestration, but leads to even heavier machinery.

http://www.arcomem.eu/
http://www.archive.org/

example being WADL [6] but they have not met with more
success on popular social Web platforms.

Another perspective is necessary. Spring Social4 is a Java
framework to interact with the different social platforms. We
believe this bottom-up approach is a very promising way to
make the developers’ work simpler. Spring Social implements
a number of useful functionalities (authentication, uniform
interface to some of the API types, etc.) but does not fulfill
our requirements. On the one hand, some important features,
especially for archival crawling, are not considered, such as
limits on the number of requests. On the other hand, using
Spring Social requires understanding an important amount
of code before being able to interact with a social platform.
To give an order of magnitude of the size of the software, the
core v1.02 contains 405 files, without implementing any Web
API.5 With API Blender, we aim at more simplicity and
flexibility, as highlighted by the example of use we give in
Section 3.

Our main source of inspiration has been the SPORE
project [4]. It consists in a simple implementation-agnostic
JSON format allowing to describe Web APIs designed accord-
ing to the REST principles. The project has been started
recently and is still under development.

With API Blender, we extend SPORE with the following
contributions:

1. two simple description formats at the API and request
levels, adapted to social platforms, sorting SPORE out
and complementing it;

2. an open Python implementation, allowing to easily
integrate various platforms;

3. the following features, some of them left out of existing
tools or libraries: authentication, server policy man-
agement, multi-platform data integration, and request
chaining.

We designed API Blender inspired by what we observed
on five prominent social platforms we identified: Twitter,
Facebook, Google+, FlickR and Youtube. However, we
strove at keeping a high flexibility so that it can be extended
to many other Web APIs.

Our article is organized as follows. In Section 2, we present
descriptions formats and discuss their relevance to social
platforms. We then detail in Section 3 our implementation
in Python and its features.

2. DESCRIPTION FORMATS
A Web API consists in a set of HTTP request messages as-

sociated to responses, sent to a specific HTTP server having
its own rules. Note that Twitter has different APIs corre-
sponding to different hosts: for instance, api.twitter.com:
80 or search.twitter.com:80.6 We describe a Web API
with several objects that allow to describe the server and its
rules (with respect to access policies) as well as the interac-
tions it offers. We find JSON [3] light and readable and have
chosen to use it as a serialization. In what follows, we tried
using straightforward names and self-explaining conventions
to define the different elements.

4http://www.springsource.org/spring-social
5http://s3.amazonaws.com/dist.springframework.org/
release/SOCIAL/spring-social-1.0.2.RELEASE.zip
6https://dev.twitter.com/docs/
history-rest-search-api

Server description format. We have extended SPORE
with a consistent oriented-object approach, as well as the
addition of authentication and policy usually required to
interact with social platform Web APIs.

Server Object
"name": string ,
"host": string ,
"port": integer ,
"authentication": auth_object ,
"policy": policy_object ,
"interactions": [interaction_object]

Port, policy, and authentication are optional. The port
defaults to 80.

Two authentication protocols are supported at the moment,
one based on a unique authentication URL with parameters
and the other on the three-legged OAuth2 [7].

Simple Authentication Object
"request_token_url": uri ,
"url_parameters": object

By simple authentication, we mean authentication with pa-
rameters such as API key or login and password passed to a
unique URL so as to receive the authentication token.

OAuth2 Authentication Object
"consumer_key": string ,
"consumer_secret": string ,
"request_token_url": uri ,
"access_token_url": uri ,
"authorize_url": uri

Many social platforms (e.g., Twitter, Facebook, Google+)
accept OAuth2 authentication.

Policy Object
"requests_per_hour": integer ,
"too_many_calls_response_code": integer ,
"too_many_calls_waiting_seconds": integer

An overload can be detected by counting the requests or
receiving a too-many-calls response. In the latter case, API
Blender will snooze for the specified amount of time before
testing if the counter has been reset.

Interaction description format. An interaction is a class
of HTTP requests with a common root path and their asso-
ciated responses. Here also we extended SPORE and added
the response object.

Interaction Object
"name": string ,
"description": string ,
"request": request_object ,
"response": response_object

The description is optional.

Request Object
"root_path": string ,
"method": string

api.twitter.com:80
api.twitter.com:80
search.twitter.com:80
http://www.springsource.org/spring-social
http://s3.amazonaws.com/dist.springframework.org/release/ SOCIAL/spring-social-1.0.2.RELEASE.zip
http://s3.amazonaws.com/dist.springframework.org/release/ SOCIAL/spring-social-1.0.2.RELEASE.zip
https://dev.twitter.com/docs/history-rest-search-api
https://dev.twitter.com/docs/history-rest-search-api

"raw_content": string
"url_parameters": [

[string , # key , e.g., "id"
string , # type , e.g., "integer"
boolean # is it an optional parameter?
object # the default value , it can be null]

]

The method has to be GET, PUT, POST or DELETE.
Providing raw content is optional and useful only for PUT
and POST methods. If a default value is set on a URL
parameter, it will be automatically passed with the default
value unless it is explicitly set as null. This feature can be
useful in many case such as requesting a default value of 100
responses per pages for a full-text query on Twitter search
API.

Response Object
"expected_status_code": integer ,
"serialization_format": serialization_format ,
"expected_schema": json_schema_object ,
"integration": extractor_object

The expected code is optional and defaults to 200. The
serialization format has to be JSON or XML at the moment.
The expected schema of the response is optional and can be
defined as a JSON schema [9]. At the moment, we define a
simple extractor that allows a mapping between a unified
model and response fields. We use ‘.’ as a path separator. For
instance, we could have "post.content": "post_data.text"

if our integrated model was {"post": {"content": string}}

with a response model of {"post_data": {"text": string}}.
With a careful normalization model (for instance using con-
cepts of an ontology), this allows to integrate data coming
from different platforms. As an extension, this semantic
model could also be used to describe the inputs of services,
a first step towards semantic service orchestration.

3. THE PYTHON IMPLEMENTATION
Python is becoming increasingly popular among developers.

On the social coding platform GitHub, it is ranked third.7

We find Python to be simple, flexible, and to have many
useful libraries. We have chosen to implementation API
Blender in this language. API Blender is available online
at https://github.com/netiru/apiblender.

Structure. The module structure offered by Python allows
us to adopt the following light structure.

API Blender package
main.py Controller
server.py Server and interactions
policy.py Policy management
auth.py Authentification management
config/ JSON configuration files
--general.json General config
--apis/ API config files

We found it convenient to have one file per API server where
we gather the descriptions for the server and its interac-
tions. Currently, the API Blender supports the two Twitter
APIs (generic and search), Facebook, Google+, FlickR and
Youtube.
7After JavaScript and Ruby, https://github.com/
languages

Features. API Blender implements several precious fea-
ture. It supports the two main authentication types: using
a single URL with parameters and OAuth2 [7] thanks to
Python OAuth28.
API Blender also ensures respect of the server policy ;

when the hourly limit is reached or when a too-many-calls
response is identified, the policy manager will stop for some
time and periodically test if the counter has been reset. Error
handling is taken into consideration too, whether it regards a
non-conforming configuration file or an unexpected response.
Finally, API Blender gives the possibility to extract and
normalize elements from responses. This feature supports
simple field extraction and standardization at the moment
but the same process will be possible with arbitrary subtree
transformations in the near future.

Request chaining. The open nature of API Blender com-
bined to the flexibility of Python can fill many needs. Request
chaining becomes very simple with Python and complex in-
teractions can become easy-to-maintain Python libraries. We
illustrate this with the following example on two Twitter
APIs. The program below retrieves the last three pages of
tweets containing the keywords “good spirit” then fetches the
local social network (followers and followees) of the authors
of the tweets.

Example of request chaining with Python
import apiblender

blender = apiblender.Blender ()

Retr i ev ing 3 pages o f r e s u l t
blender.load_server("twitter -search")
blender.load_interaction("search")
users = set()
for p in range (1,3):

blender.set_parameters ({"q": "good spirit",
"page": p})

response = blender.blend()
ts=response["prepared_content"]["results"]:

for twitt in ts
users.add(twitt["from_user"])

Retr i ev ing f o l l ow e r s / f o l l ow e e s f o r each user
blender.load_server("twitter -generic")
for user in users:

blender.load_interaction("followers")
blender.set_parameters ({"screen_name":user})
followers = blender.blend()

blender.load_interaction("followees")
blender.set_parameters ({"screen_name":user})
followees = blender.blend()

Pr int ing everyth ing
print("User Name: %s" % user)
print("\tFollowers: %s" % \

followers["prepared_content"])
print("\tFollowees: %s" % \

followees["prepared_content"])

8Created and maintained by SimpleGeo Inc. https://
github.com/simplegeo/python-oauth2

https://github.com/netiru/apiblender
https://github.com/languages
https://github.com/languages
https://github.com/simplegeo/python-oauth2
https://github.com/simplegeo/python-oauth2

4. CONCLUSIONS
API Blender has been designed in the context of the

ARCOMEM project on social Web archiving, and is put to
use in this project to crawl and integrate data from various
social Web platforms. We have found its flexibility useful
in the light of the dynamicity of social Web platforms and
managed to conveniently integrate the five platforms cur-
rently supported: Twitter, Facebook, FlickR, Google+, and
Youtube. It is of potential use in any application that needs
to access similar REST-inspired Web APIs and to export
responses in a common schema. The source code being avail-
able on GitHub, we hope to solicit contributions, either in
the form of extensions of the base functionalities, or in that
of API descriptions. For future work, we see many promising
opportunities such as:

1. smarter processing of responses, making use of the
semantics of the services described, in the spirit of the
semantic description of Web services à la OWL-S [11];

2. developing more standard request chaining libraries;
3. a possible integration of the different input schemas;
4. more research for a smarter snooze management;
5. distributing requests across different servers.

They all require to be very conscious of the existing trade-off
between completeness and flexibility.

5. ACKNOWLEDGMENTS
The described work was funded by the European Union

Seventh Framework Programme (FP7/2007–2013) under
grant agreement 270239 (ARCOMEM).

6. REFERENCES
[1] G. Alonso. Myths around web services. IEEE Data

Eng. Bull., 25(4):3–9, 2002.

[2] R. Chinnici, J.-J. Moreau, A. Ryman, and
S. Weerawarana. Web Services Description Language
(WSDL) 2.0. http://www.w3.org/TR/wsdl20/, June
2007. W3C Recommendation.

[3] D. Crockford. The application/json media type for
JavaScript object notation (JSON). http:
//www.ietf.org/rfc/rfc4627.txt?number=4627, July
2006. IETF, Network Information Group.

[4] F. Cuny. SPORE – Specifications to a POrtable Rest
Environment.
https://github.com/SPORE/specifications,
November 2011.

[5] T. Erl. Service-Oriented Architecture: A Field Guide to
Integrating XML and Web Services. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2004.

[6] M. Hadley. Web Application Description Language.
http://www.w3.org/Submission/wadl/, August 2009.
W3C Member Submission.

[7] E. Hammer, D. Recordon, and D. Hardt. The OAuth
2.0 authorization protocol. http:
//tools.ietf.org/html/draft-ietf-oauth-v2-23,
January 2012.

[8] D. Jordan and J. Evdemon. Web services business
process execution language version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html, April 2007.

[9] E. K. Zyp. A JSON media type for describing the
structure and meaning of JSON documents. http:
//tools.ietf.org/html/draft-zyp-json-schema-03,
November 2010.

[10] L. Mandel. Describe REST Web services with WSDL
2.0. http://www.ibm.com/developerworks/
webservices/library/ws-restwsdl/, May 2008. IBM
Technical Library.

[11] D. Martin, M. Burstein, J. Hobbs, O. Lassila,
D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-S: Semantic
Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, November
2004. W3C Member Submission.

http://www.w3.org/TR/wsdl20/
http://www.ietf.org/rfc/rfc4627.txt?number=4627
http://www.ietf.org/rfc/rfc4627.txt?number=4627
https://github.com/SPORE/specifications
http://www.w3.org/Submission/wadl/
http://tools.ietf.org/html/draft-ietf-oauth-v2-23
http://tools.ietf.org/html/draft-ietf-oauth-v2-23
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
http://www.w3.org/Submission/OWL-S/

	introduction
	Description formats
	The Python implementation
	Conclusions
	Acknowledgments
	References

