
Visualizing Large Image Datasets in 3D Using WebGL and
Media Fragments

Charles-Frederik
Hollemeersch

∗

Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium

Bart Pieters
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium

Aljosha Demeulemeester
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium

Davy Van Deursen
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium

Peter Lambert
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium

Rik Van de Walle
Ghent University - IBBT
ELIS - Multimedia Lab

Ghent, Belgium

ABSTRACT
The recent standardization of WebGL opened new possi-
bilities for graphically-intensive web-based applications. In
this paper, we show how we can interactively visualize very
large texture datasets (in the order of gigapixels) on arbi-
trary 3D geometry using WebGL and JavaScript. Our re-
sults show that real-time performance can be achieved on
current-generation hardware and browsers.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism - Color, shading, shadowing and texture

Keywords
WebGL, Streaming, Visualization

1. INTRODUCTION
The new HTML5 [3] standard adds many valuable features
for web developers. Web applications using HTML5 are vi-
sually richer, more responsive and offer greater platform in-
dependence. Instead of relying on vendor and platform spe-
cific plugins, standardized technologies such as 2D canvas
and 3D WebGL [5] allow graphics operations to be scripted
directly from within JavaScript. WebGL is a JavaScript
binding of the existing OpenGL-ES standard which offers
developers a lightweight (OpenGL-ES was originally meant
for embedded applications) but flexible 3D graphics API.
Both Chrome and Firefox support WebGL in their public
releases while both Opera and Safari are working on We-
bGL support. WebGL is also being considered for mobile
platforms. For example, the beta version of Firefox for An-
droid has experimental WebGL support.

Besides WebGL, the media fragments specification is an-
other new standard which supports rich multimedia appli-
cations [7]. This specification describes a standardized URI

∗Contact e-mail: charlesfrederik.hollemeersch@ugent.be

Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

scheme for accessing fragments of a media resource. For ex-
ample, individual audio or video fragments can be addressed
in a longer media sequence. Not limited to temporal frag-
ments, the schema also allows accessing spatial fragments
within an image or video frame as well as addressing several
tracks within a single resource.

Visualizing high-resolution image data sets is a common
problem in many applications. GIS, biology, archeology, her-
itage, and educational applications all have benefited from
efficiently acquiring and accessing large image data sets [1].
When extending such applications to 3D, new problems arise
such as determining which data is needed at what resolution.
Existing online 3D solutions such as Google EarthView1 or
Nokia Maps 3D2 again rely on browser plugins to generate
the 3D visuals. In this paper we will describe our system
that allows visualizing large image datasets (referred to as
textures in a 3D visualization context) solely using the We-
bGl standard.

2. OVERVIEW OF THE SYSTEM
Figure 1 shows a screenshot of our application. A public
demo is accessible at http://multimedialab.elis.ugent.

be/webgl_demo/. This demo visualizes a 15 gigapixel or-
thophoto mapped onto a 3D mesh that was generated from
height data. Note that our system is not limited to planar
or landscape-like geometry but supports arbitrary 3D mod-
els such as buildings and indoor scenes. To avoid having
to download the whole dataset (75 gigabytes uncompressed
and two gigabytes compressed) when the user initially visits
our site, we dynamically stream only the visible portions of
the dataset. This allows our system to generate images as
shown in Figure 1 with only a few seconds of loading time.
After initial loading, the user can then freely explore the
scene while additional texture data is dynamically down-
loaded using asynchronous image requests only when it be-
comes visible.

Figure 2 shows the architecture of our application. The
server side is split in two parts, one part hosts static re-
sources (i.e. html files, JavaScript files, ...), the other part

1http://maps.google.com/earthview/
2http://maps.nokia.com/3D/



Figure 1: A screenshot of our web site running in
Google Chrome.

Browser

Graphics Driver (DirectX or OpenGL)

GPU Hardware

Client

WebGL API
(Part of HTML5 browser)

Client Side Visualization
(implemented in JavaScript)

Server

HTTP Server Application

Tile Server Web Application
(serves JPEG tiles)

Static file hosting
(serves HTML, JavaScript, CSS,…)

HTTP Protocol

Figure 2: The logical architecture of our system.

then serves the texture tile requests using media fragment
query URIs. This part will be discussed in more detail in
Section 4. At the browser side, our application runs en-
tirely in JavaScript using WebGL to efficiently offload any
computationally intensive tasks to native code or even the
GPU.

3. WEBGL IMPLEMENTATION
Our system works by storing the tiles which were down-
loaded from the server in a client side cache. This cache
is physically stored as a WebGL texture object. The tiles
present in the cache are managed by our application in
JavaScript code. To efficiently render from this cache using
WebGL, an additional lookup table, the tile table, is needed.
The tile table is also stored as a WebGL texture object. The
tile table needs to be updated whenever the contents of the
cache change. To optimize this update, the texture is filled
using WebGL render-to-texture commands instead of man-
ually modifying the pixel values from JavaScript. Figure 3
shows the process of rendering a single view in our system
using the cache and tile table. We refer to our publication
on the desktop version of our system [4] for a detailed tech-
nical explanation of the rendering process using these two
data structures.

One of the biggest challenges when switching from 2D image
zooming applications to arbitrary 3D meshes is determining
the set of tiles that need to be present in the cache. Due
to the presence of arbitrary texture coordinates there is no
strict analytical relationship between the visualized pixels
and the corresponding resolution needed of the gigapixel im-
age. Additionally, further away portions of the dataset may

be occluded by geometry closer to the camera. E.g. in Fig-
ure 1, portions of the dataset hidden behind the hill do not
need to be loaded by the system. To overcome these issues,
our system works by rendering an additional low resolution
view of the scene. Instead of outputting shaded colors in
this low resolution view, we output the addresses of the tiles
that need to be present to visualise this view. The rendered
pixels are then read back into a JavaScript array and an-
alyzed by looping over them. Any addresses encountered
which are not present in the cache will then be requested
from the server through an asynchronous image request. As
we will show in Section 5, this buffer is sufficiently small that
analyzing it using JavaScript does not impose a significant
performance impact.

It is important to note that our system, except for analyzing
the low-resolution rendered view, does not need to do any
data intensive pixel processing operations. Textures arriv-
ing from the server are encapsulated in a image object that
can be passed to OpenGL without requiring any further pro-
cessing. As we noted above, our tile table is updated using
WebGL drawing commands. As we will show in Section 5,
this careful implementation allows us to easily achieve real-
time speeds. The JavaScript code is in fact nothing more
than a director for the work happening in other parts of the
browser and graphics driver.

4. USE OF MEDIA FRAGMENT URIS
As discussed in the previous section, our application dynam-
ically requests multi-resolution image tiles from the server.
To transfer image tiles, several other technologies and URI
formats have been proposed in the past. Examples are the
Internet Imaging Protocol [2] and the Deepzoom [6] URI
formats. However, we opted for the media fragments URI
format. First, using a W3C standard should ensure that
in the future our browser based application can easily work
independently of any particular image server. Second, the
media fragment URI format uses pixel based requests in-
stead of requesting data using tile numbers. This is impor-
tant since it helps to further hide application specific details
such as the tile sizes and layouts from the server. For ex-
ample, to ensure fast and high-quality texture filtering, our
system can use overlapping tiles (we refer to [4] for more de-
tails on filtering using overlapped tiles). By using per-pixel
addressing, this visualization-specific detail can be hidden
from the server. To map our multi-resolution axis to media
fragments we used the track parameter. For example, the
following URI http://www.example.com/example.jpages?

xywh=476,596,128,128&track=1 requests the 120×120 tile
with index (4, 5) on resolution level 1 with a 4 pixel border
overlap.

5. RESULTS
We now briefly discuss the performance of our system on
a variety of browsers. We tested our system on the latest
(release) versions of Chrome(v16) and Firefox (v10). For
opera we used Opera Next (v12-alpha). Note that on Opera
our system does not generate valid output. This seems to
be related with initializing textures from JavaScript typed
arrays as opposed to initializing them from image dom ob-
jects. Although this results in invalid output, it does not
affect some subsystems of our application and thus we in-
cluded the results in our comparison.



Translation Table

The final pixel color is calculated

(fog, … is applied).

The tile address is calculated and 

the translation table is read.

The location in the cache is 

determined and the tile is read.

Tile Cache

Figure 3: The steps needed to render a picture using the tile table and tile cache.

Table 1: Execution times (in milliseconds) of the
different subsystems. Results were measured on
an Intel Core2 2.4GHz processor with an NVIDIA
GeForce GTX 480 GPU.

System Chrome Firefox Opera
Render off-screen buffer 0.03 0.17 0.07
Read back buffer 10 2.9 6.5
Analyze buffer 1.4 2 1.2
Render main view 0.04 0.13 0.21
Total per frame 11.47 5.2 7.98
Single tile request 168 422 260
Single tile load 2 1.3 1.5
Total per tile 170 423.3 261.5

Table 1 shows the execution times of the different steps
needed to render a single frame. The off-screen buffer render
phase is the time it takes to render the low resolution view
that will be analyzed by JavaScript. The read back phase
is the time it takes to read back the data from the GPU
so it can be accessed in JavaScript. The analyze phase is
the time it takes to effectively loop over the pixels and gen-
erate http requests for any missing tiles. Finally the main
visuals phase is the time it takes to render the final output
that is presented to the user (i.e. the texture model and
background sky and fog effects). The last two rows then
show the tile request time (time elapsed between requesting
a new tile and our JavaScript code asynchronously receiv-
ing the tile through a callback) and the tile load time (time
elapsed to upload the tile to the GPU cache).

From these performance results, we can draw some inter-
esting conclusions on the design of the different browsers.
We observe that Chrome still excels in JavaScript intensive
tasks such as setting up the draw commands. However, note
that the other two browsers perform a lot better on the read
back phase. This is probably caused by Chrome’s out-of-
process WebGL architecture, which makes the latency of
synchronizing with the external process which in turns has
to synchronize with the GPU a rather expensive operation.

Besides looking at pure performance results, it is also inter-
esting to look at the overall responsiveness when navigating
the scene. Here Chrome is the clear winner over Firefox
(we do not consider Opera here due to its invalid output).
The main reason for this is that while Chrome takes 168
milliseconds to request a page, the actual request does not
block the main thread. I.e. the user can still move around
the camera and interact with the page during this period. In

comparison, Firefox scores much worse here. First it takes
around 422 milliseconds to request a page and hand it over to
our JavaScript code. Second, and more annoying, it blocks
the main user interface for at least some portion of this
time. Considering that we request several pages per second,
this results in a very sluggish, almost unusable, performance
when many pages have to be delivered to the cache.

6. CONCLUSIONS AND DISCUSSION
In this paper we have shown how modern web technologies
can be used to create rich, interactive multimedia applica-
tions. We have also shown how real-time results can be
achieved with current-generation browsers and computers.
As developers with background in native applications, the
authors are genuinely surprised about the performance and
capabilities of the HTML5 platform. The authors certainly
believe that HTML5 combined with WebGL could replace
many platform specific native applications with web-based
counterparts.

7. ACKNOWLEDGMENTS
The research activities that have been described in this pa-
per were funded by Ghent University, the Interdisciplinary
Institute for Broadband Technology (IBBT), the Institute
for the Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWOFlanders), and the European Union.

8. REFERENCES
[1] K. A. Frenkel. Panning for science. Science,

330:748–749, November 2010.

[2] Hewlett Packard Company, Live Picture Inc., and
Eastman Kodak Company. Internet Imaging Protocol
v1.0.5, 1997.

[3] I. Hickson, editor. HTML5 A vocabulary and associated
APIs for HTML and XHTML.

[4] C. Hollemeersch, B. Pieters, P. Lambert, and R. Van de
Walle. Accelerating virtual texturing using cuda. In
W. Engel, editor, Gpu Pro: Advanced Rendering
Techniques, chapter 10.2, pages 623–641. A K Peters.,
2010.

[5] C. Marrin, editor. WebGL Specification. Khronos
Group, 2011.

[6] Microsoft Corporation. Deep Zoom File Format
Overview, 2012. http://msdn.microsoft.com/en-us/
library/cc645077(v=vs.95).aspx.

[7] R. Troncy, E. Mannens, S. Pfeiffer, and D. Van
Deursen, editors. Media Fragments URI 1.0. W3C,
2011.


