
Enriching the web with CSS Filters 

Raul Hudea Rik Cabanier Vincent Hardy
Adobe Systems Adobe Systems Adobe Systems 

Bucharest, Romania San Francisco, CA 94103 San Francisco, CA 94103
rhudea@adobe.com cabanier@adobe.com vhardy@adobe.com 

ABSTRACT 
Filters in the web world are not a novelty, as they were 
already available for SVG content. The ability of applying 
filters on various SVG elements provided the developers with 
sophisticated rendered effects. With CSS Filters, it will be 
to be possible to style HTML elements by using filter ef
fects. By default, the CSS Filters offers a good selection 
of predefined filters (like blur, sepia, grayscale) which allow 
developers to quickly make their HTML application more 
awesome. For the ones who want more control on how a 
filter should apply to a HTML element, CSS Shaders are a 
way as they provide the flexibility and expressivity needed 
to created arbitrary effects. This paper will look at how 
CSS Filters and CSS Shaders works and how can be used to 
create unique HTML content. 

Categories and Subject Descriptors 
I.3.6 [Methodology and Techniques]: Standards 

General Terms 
Design, Specification 

Keywords 
HTML5, CSS Filters, CSS Shaders, CSS Compositing 

1. INTRODUCTION 
The graphical and interactive richness of HTML has greatly 
improved in the recent years. CSS Transforms, transitions, 
animations, reflections, shadows, have all contributed to what 
we currently expect of a HTML5 application. The origi
nal SVG Filter effects specification is currently being trans
formed into a common specification covering CSS and HTML 
in addition to SVG. 

2. CSS FILTERS 
The filter effect is a way of applying that effect on an image 
buffer. The way this works in the HTML world is that an 

Copyright is held by the author/owner(s).
 
WWW2012 Developer Track, April 18-20, 2012, Lyon, France.
 

Figure 1: Predefined CSS filters 

element (including its children) are rendered into a buffer. 
On that buffer, the filter effect is applied, and then that 
buffer is composited into the elements parent. 

To apply a filtering effect on a HTML element is quite sim
ple. Here is how to apply a blur effect on an HTML element: 

<style>
 
#elem { filter: blur(1); }
 
</style>
 

The CSS filter property allows the use of one or a chain 
filters that should be applied. It is designed to be used with 
CSS Animations/Transitions. 

The filter property can use a number of predefined filter 
functions: blur, drop-shadow, gamma, grayscale, hue-rotate, 
invert, opacity, saturate, sepia and sharpen. These filters 
can be used either as standalone (as in the example above) 
or can be combined as a chain of filters where the output of 
the previous filter is the input of the next one. 

2.1 CSS Shaders 
But even if the default filters can be chained, it is clear 
that they can not satisfy the need for creating unique ways 
of rendering HTML elements. In order to satisfy this need, 
filter accept a custom filter which allows the usage of custom 
written vertex shaders and fragment shaders. 

mailto:vhardy@adobe.com
mailto:cabanier@adobe.com
mailto:rhudea@adobe.com


Figure 2: Custom CSS shaders processing model 

A shader is a (typically) small program that process the 
vertices of 3D geometry vertex shaders and the color of pix
els fragment shaders. For example, a fragment shader, also 
called pixel shader, can make arbitrary computations to de
termine the pixel’s color, while a vertex shader can create a 
waving flag effect on a surface. By being used in 3D graphics, 
these shaders can be hardware accelerated and CSS shaders 
harness this power. 

The custom filter are used similarly like the predefined ones: 

filter: custom(url(’vertex.fs’), 
url(’fragment.fs’), 
vertexMesh, 
params); 

2.2 Writing CSS Shaders 
The language in which vertex shaders and fragment shaders 
are written, is the OpenGL ES shading language, which is 
also used for WebGL, another web related technology. The 
shading language is designed to make programming visual 
effects easy and exposing this to CSS offers a tie to this 
expressivity into the CSS syntax and make it easy to use 
and animate these effects. 

It is not difficult to write shaders, but it takes some practice 
to do it and it is a lot of fun to author. Here is a sample of 
a color inverter shader: 

precision mediump float;
 
// The ’original’ content rendering in a texture.
 
uniform sampler2D s_texture;
 
// Shader parameters
 
uniform float amount;
 
varying vec2 v_texCoord;
 
void main() {
 
vec4 color = texture2D(s_texture, v_texCoord);
 
vec4 icolor = vec4(color);
 
if (color.a > 0.0) {
 
icolor.rgb /= icolor.a;
 

}
 
icolor = vec4(1.0 - icolor.r,
 

1.0 - icolor.g, 
1.0 - icolor.b, 
icolor.a);
 

icolor.rgb *= icolor.a;
 

Figure 3: Custom shaders in action 

2.3 Current status 
The predefined CSS Filters (like blur, gamma...) are avail
able in developer versions of Google Chrome browser and 
nightly versions of WebKit1 . Since December 2011, these fil
ters are hardware accelerated, taking advantage of the GPU 
power available on the machine. The hardware accelera
tion path is currently available only on WebKit for Mac and 
Google Chrome2 . 

Support for CSS Shaders is currently available in both We
bKit3 and in nightly versions of Google Chrome (called Ca
nary builds)4 . Currently, there is no hardware acceleration 
path for any browser, but we are working to enable this for 
Google Chrome. 

3. CSS COMPOSITING AND BLENDING 
For years, designers have use advanced blending modes such 
as multiply and hard light and advanced to create visu
ally compelling designs. The CSS compositing and blend
ing specification seeks to brings this richness to web pages 
through a couple of simple CSS keywords. 

Just as with CSS filters, this new specification can be used 
in HTML as well as SVG content and will act as a shorthand 
to the existing SVG filters that deal with compositing and 
blending. 

The intent is to match the names, algorithms and visual rep
resentation of existing blending modes so people can reuse 
their existing skill set. 

Another goal of the spec is to provide an easy to understand 
description on how blending, compositing and possibly color 

1WebKit is the underlying HTML engine for Apple Safari 
and Google Chrome. See http://webkit.org 
2If the --enable-accelerated-filters command line 
switch is used 
3gl_FragColor = (1.0 - amount) * color + amount * icolor; If WebGL support is enabled 

} 4If the --enable-css-custom-filter command line switch 
is used 

http:http://webkit.org
http:url(�fragment.fs
http:custom(url(�vertex.fs


management are done so people that are not familiar with 
the subject matter can understand the design decisions. 

4. CONCLUSIONS 
As the CSS Filters and Shaders will become available in 
browsers, it will enable designers to come with idea that 
will surely blow our mind. By using custom CSS Shaders 
will allow developers to create new ways of interacting with 
the content, and, who knows, maybe a new ecosystem will 
appear around custom CSS Shaders. 

5. REFERENCES 
[1] V. Hardy. Introducing css shaders: Cinematic effects 

for the web. Tutorial, Adobe Systems, Oct. 2011. 
http://www.adobe.com/devnet/html5/articles/css
shaders.html. 

[2] P. of the W3C CSS and S. W. Groups. Filter effects 
(FILTERS) 1.0 specification. W3C editor’s draft, W3C, 
Dec. 2011. https://dvcs.w3.org/hg/FXTF/raw
file/tip/filters/index.html. 

[3] The Kronos Group Inc. The OpenGL ES Shading 
Language 
http://www.khronos.org/files/opengles shading language.pdf 

[4] J. Ferraiolo and D. Jackson. Scalable vector graphics 
(SVG) 1.1 specification. W3C recommendation, W3C, 
Jan. 2003. 
http://www.w3.org/TR/2003/REC-SVG11-20030114/. 

[5] WebKit, HTML rendering engine 
http://www.webkit.org 

[6] Chromium browser http://www.chromium.org/Home 

http://www.chromium.org/Home
http:http://www.webkit.org
http://www.w3.org/TR/2003/REC-SVG11-20030114
http://www.khronos.org/files/opengles
https://dvcs.w3.org/hg/FXTF/raw
http://www.adobe.com/devnet/html5/articles/css



