
LDIF - A Framework for Large-Scale Linked Data
Integration

Andreas Schultz
Web-based Systems Group

Freie Universität Berlin,
Germany

a.schultz@fu-berlin.de

Andrea Matteini
mes|semantics

Berlin, Germany
a.matteini@mes-info.de

Robert Isele
Web-based Systems Group

Freie Universität Berlin,
Germany

mail@robertisele.com
Pablo N. Mendes

Web-based Systems Group
Freie Universität Berlin,

Germany
pablo.mendes@fu-

berlin.de

Christian Bizer
Web-based Systems Group

Freie Universität Berlin,
Germany

chris@bizer.de

Christian Becker
mes|semantics

Berlin, Germany
c.becker@mes-info.de

ABSTRACT
While the Web of Linked Data grows rapidly, the develop-
ment of Linked Data applications is still cumbersome and
hampered due to the lack of software libraries for accessing,
integrating and cleansing Linked Data from the Web. In
order to make it easier to develop Linked Data applications,
we provide the LDIF - Linked Data Integration Framework.
LDIF can be used as a component within Linked Data ap-
plications to gather Linked Data from the Web and to trans-
late the gathered data into a clean local target representa-
tion while keeping track of data provenance. LDIF provides
a Linked Data crawler as well as components for accessing
SPARQL endpoints and remote RDF dumps. It provides
an expressive mapping language for translating data from
the various vocabularies that are used on the Web to a con-
sistent, local target vocabulary. LDIF includes an identity
resolution component which discovers URI aliases in the in-
put data and replaces them with a single target URI based
on flexible, user-provided matching heuristics. For prove-
nance tracking, the LDIF framework employs the Named
Graphs data model. LDIF contains a data quality assess-
ment and a data fusion module which allow Web data to be
filtered according to different data quality assessment poli-
cies and provide for fusing Web data using different conflict
resolution methods. In order to deal with use cases of differ-
ent sizes, we provide an in-memory implementation of the
LDIF framework as well as an RDF-store-backed implemen-
tation and a Hadoop implementation that can be deployed
on Amazon EC2.

1. MOTIVATION
The Linking Open Data Cloud catalog1 currently lists 326
datasets covering domains such as geographic data, govern-
ment data, media, libraries and publications, life science,
retail and commerce, user-generated content. As of Septem-
ber 2011, this data space is estimated to contain 31 bil-

1http://thedatahub.org/group/lodcloud

Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

lion RDF triples and around 504 million RDF links between
data sources [1]. Developing Linked Data applications that
exploit this data space is still cumbersome due to the het-
erogeneity of the Web of Linked Data and due to the lack
of toolkits to access, integrate and cleanse data from this
space.

Two major roadblocks for building Linked Data applications
are vocabulary heterogeneity and URI aliases. A part of the
Linked Data sources reuse terms from widely-deployed vo-
cabularies to represent parts of their content describing com-
mon types of entities such as people, organizations, publica-
tions and products. Other Linked Data sources do not [1].
For domain-specific entities such as genes, pathways, de-
scriptions of subway lines, statistical and scientific data,
no agreement on common vocabularies has evolved yet. A
second problem are identity links: Some data sources set
owl:sameAs links pointing at data about the same entity in
other data sources. Many other data sources do not.

In contrast to the heterogeneity of the Web, many Linked
Data applications would prefer to have all data describing
one class of entities being represented using the same vocab-
ulary. Instead of being confronted with URI aliases which
refer to data that might or might not describe the same
entity, Linked Data applications would prefer all triples de-
scribing the same entity to have the same subject URI as
this eases many application tasks including querying, aggre-
gation and visualization.

In order to ease using Web data in the application context,
it is thus advisable to translate data to a single target vocab-
ulary (vocabulary mapping) and to replace URI aliases with
a single target URI on the client side (identity resolution),
before doing more sophisticated processing.

A third roadblock for Linked Data applications is the vary-
ing quality of the published data. As the Web of Linked
Data is an open medium on which everybody can publish
data without central control, it is natural that data is in-
consistent, some sources are outdated and other sources are



intensionally misleading (SPAM). Thus, before Web data is
used in the application context, its quality needs to be as-
sessed and the application needs to decide which data to
trust and how to handle data conflicts.

There are various open source tools available that help appli-
cation developers with either Web data access, data trans-
lation, identity resolution or data quality assessment and
fusion. But up-till-now, there are hardly any scalable, inte-
grated frameworks that cover all five tasks. With LDIF, we
try to fill this gap and provide an open-source Linked Data
integration framework that provides for Web data access,
data translation, identity resolution, provenance tracking,
as well as data quality assessment and fusion.

Figure 1 shows the schematic architecture of a Linked Data
application that implement the crawling/data warehousing
pattern [1] and highlights the steps of the data integration
process that are supported by LDIF.

 

 

 

 

HTTP 

 

Application Layer 

Data Access,  

Integration and  

Storage Layer 

Web of Data 

Publication Layer 

Integrated 

Web Data 

Web Data 

Access 

Module 

Vocabulary 

Mapping 

Module 

Identity 

Resolution 

Module 

Application Code 

SPARQL or RDF API 

RDF/ 

XML 

Database A  Database B 

LD Wrapper LD Wrapper 

HTTP HTTP 

CMS  

RDFa 

HTTP 

Data Quality 

and Fusion

Module 

LDIF V0.5 

Figure 1: Role of LDIF within the architecture of a
Linked Data application.

The LDIF framework is implemented in Scala and can be
downloaded from the project website2 under the terms of
the Apache Software License. In the following, we explain
the architecture of the LDIF framework and present a per-
formance evaluation along the example of a life science use
case.

2. ARCHITECTURE
The LDIF framework consists of a runtime environment and
a set of pluggable modules. The runtime environment man-
ages the data flows between the modules. The pluggable
modules are organized in data access modules, data trans-
formation modules and data output modules. Currently, we
have implemented the following modules:

2.1 Data Access Modules and Scheduler
LDIF provides access modules for replicating Web data lo-
cally via file download, crawling or SPARQL.

2http://www4.wiwiss.fu-berlin.de/bizer/ldif/

These different types of import jobs all generate provenance
metadata, which is passed on throughout the complete in-
tegration process. Import jobs are managed by a scheduler
that can be configured to refresh the local cache hourly, daily
or weekly for each source.

Triple/Quad Dump Import: The Triple/Quad Dump
Importer is used to locally replicate dataset dumps from the
Web. The importer supports the following RDF serialization
formats: RDF/XML, N-Triples, N-Quads and Turtle.

Crawler Import: For gathering data by following RDF
links, we have integrated LDSpider into LDIF. LDspider can
be configured to perform crawls of different width and depth.
The retrieved data from each crawled URI is put into a
separate Named Graph for provenance tracking.

SPARQL Import: Data sources that can be accessed via
SPARQL are replicated by LDIF’s SPARQL access mod-
ule. The data is accessed using SPARQL construct queries.
Data from each SPARQL import job gets tracked by its own
Named Graph.

The data access modules stores the gathered data in N-
Quads format in a local directory. The graph URIs are used
for provenance tracking. Provenance meta-information de-
scribing the origin of each graph is collected within specific
provenance graph.

2.2 Data Translation
LDIF employs the R2R Framework [2] to translate Web data
that is represented using terms from different vocabularies
into a single target vocabulary. Vocabulary mappings are
expressed using the R2R Mapping Language. The language
provides for simple transformations as well as for more com-
plex structural transformations (1-to-n and n-to-1). The
language also provides for property value transformations
such as normalizing different units of measurement or com-
plex string manipulations. It also allows the user to define
modifiers which make it possible to change the language or
data type of a literal or the node type (URI ↔ literal) of
RDF nodes. The syntax of the R2R Mapping Language is
very similar to the query language SPARQL, which eases
the learning curve.

2.3 Identity Resolution
LDIF employs the Silk Link Discovery Framework [3] to find
different URIs that are used within different data sources
which identify the same real-world entity. Silk is a flex-
ible identity resolution framework that allows the user to
specify identity resolution heuristics using the declarative
Silk - Link Specification Language (Silk-LSL). In order to
specify the condition which must hold true for two entities
to be considered a duplicate, the user may apply different
similarity metrics, such as string, date or URI comparison
methods, to multiple property values of an entity or related
entities. The resulting similarity scores can be combined and
weighted using various similarity aggregation functions. Silk
uses a sophisticated blocking technique which removes defi-
nite non-duplicates early in the matching process increasing
its efficiency significantly. For each set of duplicates which
have been identified by Silk, LDIF replaces all URI aliases
with a single target URI within the output data. In addi-



tion, it adds owl:sameAs links pointing at the original URIs,
which makes it possible for applications to refer back to the
data sources on the Web. If the LDIF input data already
contains owl:sameAs links, the referenced URIs are normal-
ized accordingly.

2.4 Data Quality Assessment and Fusion
LDIF includes the Sieve [4] Data Quality Assessment and
Data Fusion Framework. The Sieve data quality assessment
module assigns each Named Graph within the processed
data one or several quality scores based on user-configurable
quality assessment policies. These policies combine an as-
sessment function with the definition of the quality-related
meta-information which should be used in the assessment
process. The Sieve data fusion module takes the quality
scores as input and resolves data conflicts based on the as-
sessment scores. The applied fusion functions can be con-
figured on property level. A basic set of quality assessment
functions and fusion functions are provided, as well as an
open interface for the implementation of additional domain-
specific functions.

2.5 Data Output
At the end of the integration queue, LDIF outputs the clean-
sed data together with the provenance information in the
form of a single N-Quads file. This file contains the trans-
lated versions of all graphs that have been gathered from
the Web, the content of the provenance graph as well as the
quality scores for all graphs. For applications that do not
require provenance and quality meta-information, LDIF can
also output the data as N-Triples without meta-information.

2.6 Runtime Environment
The runtime environment manages the data flow between
the various stages and the caching of the intermediate re-
sults. In order to parallelize the data processing, the data is
partitioned into entity descriptions prior to supplying it to
a transformation module. An entity description represents
a Web resource together with all data that is required by a
transformation module to process this resource. Entity de-
scriptions consist of graph paths and include a provenance
URI for each vertice. Splitting the work into fine-granular
entities, allows LDIF to parallelize the work using multiple
threads on a single machine as well as to parallelize process-
ing on a cluster using Hadoop.

LDIF provides three implementations of the Runtime En-
vironment: 1. the in-memory version, 2. the RDF store
version and 3. the Hadoop version. Depending of the size
of your dataset and the available computing resources, you
can choose the runtime environment that best fits your use
case.

Single machine/In-memory: The in-memory implemen-
tation keeps all intermediate results in memory. It is fast but
its scalability is limited by the amount of available memory.
For instance, integrating 25 million triples required 5 GB
memory within one of our experiments. Parallelization is
achieved by distributing the work to multiple threads.

Single machine/RDF Store: This implementation of the

runtime environment uses Apache Jena TDB3 to store in-
termediate results. The communication between the RDF
store and the runtime environment is realized in the form of
SPARQL queries. This runtime environment allows you to
process datasets that do not fit into memory. The downside
is that the RDF Store implementation is slower than the
in-memory implementation.

Cluster/Hadoop: This implementation of the runtime en-
vironment allows you to parallelize the work onto multiple
machines using Hadoop. Each phase in the integration flow
has been ported to be executable on a Hadoop cluster. The
Hadoop implementation allows you to integrate arbitrary
amounts of data given that you have access to enough ma-
chines. We have tested the Hadoop implementation on a
local cluster as well as on Amazon EC2.

3. PERFORMANCE EVALUATION
We evaluated the performance of LDIF using datasets rang-
ing from 25 million quads to 3.6 billion quads. The ex-
periments were run on local machines with a Intel i7 950,
3.07GHz (4 cores) processor and 24GB memory as well as on
Amazon EC2 using between 8 and 32 c1.medium instances
as worker nodes. The results of the evaluation can be found
at http://www.assembla.com/spaces/ldif/wiki/Benchmark.

The evaluation showed that the performance of the Hadoop
implementation scales linearly with the number of machines.
For integrating 25 million triples, the in-memory implemen-
tation required 6.5 minutes, while the triple store implemen-
tation required 29.7 minutes. Integrating 100 million triples
took the in-memory implementation 75 minutes, while the
triple store implementation required 220 minutes. 300 mil-
lion triples were integrated on Amazon EC2 in 75 minutes
using 32 worker nodes.

4. ACKNOWLEDGMENTS
This work was supported by Vulcan Inc. as part of Project
Halo (www.projecthalo.com) and by the EU FP7 project
LOD2 - Creating Knowledge out of Interlinked Data (http://
lod2.eu/, Ref. No. 257943).

5. REFERENCES
[1] Heath, T., Bizer C.: Linked Data: Evolving the Web

into a Global Data Space. Synthesis Lectures on the
Semantic Web: Theory and Technology, Morgan &
Claypool Publishers, ISBN 978160845431, 2011.

[2] Bizer, C., Schultz, A.: The R2R Framework:
Publishing and Discovering Mappings on the Web. 1st
International Workshop on Consuming Linked Data
(COLD 2010), Shanghai, November 2010.

[3] Isele, R., Jentzsch, A., Bizer, B.: Silk Server - Adding
missing Links while consuming Linked Data. 1st
International Workshop on Consuming Linked Data
(COLD 2010), Shanghai, November 2010.

[4] Mendes, P., Mühleisen, H., Bizer, C.: Sieve - Linked
Data Quality Assessment and Fusion. 2nd International
Workshop on Linked Web Data Management (LWDM
2012), Berlin, March 2012.

3http://incubator.apache.org/jena/documentation/tdb/


