
The DataTank: an Open Data adapter with semantic output

Miel Vander Sande
Ghent University - IBBT
ELIS - Multimedia Lab
9050 Ghent, Belgium
miel.vandersande@ugent.be

Pieter Colpaert
iRail NPO

9000 Ghent, Belgium
pieter@irail.be

Davy Van Deursen
Ghent University - IBBT
ELIS - Multimedia Lab
9050 Ghent, Belgium
davy.vandeursen@ugent.be

Erik Mannens
Ghent University - IBBT
ELIS - Multimedia Lab
9050 Ghent, Belgium
erik.mannens@ugent.be

Rik Van de Walle
Ghent University - IBBT
ELIS - Multimedia Lab
9050 Ghent, Belgium
rik.vandewalle@ugent.be

ABSTRACT
The idea of Open Data states that by making data sets freely
available on the Internet, data owners can benefit from a
huge community. In this paper, we extend The DataTank
framework, a data adapter for publishing local Open Data
as a Web API, to produce semantic output. A data set and
its content are identified by a unique URI, exploiting the
REST interface and differentiating between IR and NIR.
Also, a data set can be requested as RDF in multiple nota-
tions. Furthermore, ontology information can be added to
a data model, thus creating machine-understandable RDF.
This ontology information is made externally reusable and
changeable. The DataTank now produces semantic output,
while the original architecture remains unchanged.

1. INTRODUCTION
Today the Web contains an enormous amount of data used in
websites or applications. Unfortunately, this data is locked
away on servers, only available to the owner. Recently, the
idea of Open Data arose, stating that certain data should be
freely available on the Web for anyone to use or redistribute.
This way, anybody can start building applications with this
data, thus addressing the creativity, input and workload of a
huge community. As a result, the return from this commu-
nity is way larger than a single company can handle, while
the investment is a lot less.

Tim Berners-Lee, the creator of the Web, defined partici-
pation in Open Data as five stars [1]. First, put data on
the Web with an open license. Second, it is structured and
machine readable. Third, it has a non-proprietary format.
Fourth, use URIs to identify things, so people can point at
it, and return something meaningful in a machine-readable
language (e.g., RDF). Fifth, link your data to data from
others. In this research we focus on helping governments

(and others) to easily go from the second star to the fourth,
making the step into valuable Open Data smaller and faster.

The DataTank1 is our open-source data adapter platform.
It publishes local data on-the-fly as a web API. This makes
the original data directly and remotely usable for develop-
ers. This maximizes the potential of your data, while the
extra effort of the user is minimized. Our goal is to ex-
tend this platform with meta-data description (making it
machine-understandable) and output in the RDF standard,
while keeping the original philosophy of minimal effort in
mind.

2. RELATED WORK
Several works on publishing Open Data as Web APIs ex-
ist, but they all differ in their field of application. Web
API layer tools [3] focus on publishing Open Data through
a standard interface into multiple standard formats. They
offer flexibility and get good performance results. However,
they duplicate the data, lowering the owner’s control. Fur-
thermore, they do not consider any semantic output.

Closely related is the catalogue software CKAN [4], which
mainly provides Open Data storage and access. They offer
a good user interface for managing data sets and support
linked data as well. Access is provided through an API
that can be queried and provide multiple output formats.
Meta data can be added to the data sets and versioning
is included. Although RDF can be retrieved, this is only
possible if the source is originally in RDF. Also, the web
interface they offer is not RESTful and every data set is
stored on their server.

In the area of RDF conversion is the RDF extension for
Google Refine [2] is a popular solution, but only works with
off-line datasets. More web-oriented approaches are database
abstraction systems [5]. A virtual RDF abstraction is cre-
ated on top of relational databases, to serve a SPARQL
processor. However, the abstraction is based on database
schemas and manually defined mappings. They therefore
require the data source to be a relational database, or at
least imported into one.

1developed by iRail V.Z.W - http://thedatatank.com



3. THE DATATANK AS DATA ADAPTER
The DataTank is a PHP server application forming a data
adapter between the original data source and the data con-
sumer (e.g., App developer). Each dataset is available as
a Resource, which is part of a virtual directory, called a
Package. This is then accessible through the URI http:

//<host>/<package>/<resource>. We can break the phi-
losophy down in three main features: RESTful, data storage
avoidance and multiple format support. First, the data in
the adapter can be addressed through a RESTful interface.
This defines the whole data flow, as it is build with a CRUD2

functionality in mind. Data sets are read, added, changed
or deleted by sending a corresponding HTTP GET, PUT,
POST or DELETE request to the server. Second, the data
is not stored, thus giving data owners more insight in how
much, when, where and by whom their data is used. Only
the location of the data source is stored, implying an on-
the-fly approach when converting and publishing the data.
Third, data can be converted from multiple data formats to

Figure 1: Basis architecture of a read operation,
supporting multiple formats.

multiple data formats. This is supported by implementing
a loosely coupled module structure, so extra formats can be
added easily. As illustrated in Figure 1, input formats are
handled by a Strategy, containing parsing logic for a struc-
tured data format(e.g., CSV). A resource will dynamically
create a generic data object based on the original data, us-
ing the right strategy. Output formatting is handled by a
Formatter, implementing serialisation logic for turning the
generic data object into a specific web format (e.g., XML).

4. PRODUCING SEMANTIC OUTPUT
In this research, we extended The DataTank to produce four
star data, implying an RDF conversion. For this, we focused
on three points. First, we created a clear distinction in URIs
between things and their representations on the web. Sec-
ond, we implemented a ontology mapping module, which
maps the generic data object model to an ontology. Third,
we combined the data and the mapping to generate a RDF
graph.

We manipulate RDF and OWL models using RAP (RDF
API for PHP)3. We chose this library because of its resource-
centric manipulation methods, database persistent model,
parsing in multiple notations and serialization in multiple
notations. We extended the API to work with the database
abstraction layer of The DataTank, for using database per-
sistent models.

4.1 Differentiating between an IR and a NIR
The RESTful interface of The DataTank allows data sources
to be browsed hierarchically. For example, a row-column
value of a tabular data source can be accessed by requesting
.../<package>/<resource>/<rownumber>/<columnlabel>.

2Create, Read, Update, Delete
3http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/

This automatically defines a unique URI for every entity in
a data set. In line with the fourth star of Open Data, we
exploit these URIs to enable semantic descriptions about
entities embedded in a data set.

Before these URIs can be used in the Semantic Web, we
require a different URI for identifying a NIR (Non Infor-
mation Resource) then for identifying an IR (Information
Resource). A NIR is something that we can describe, but
has no physical form on the Web (e.g., the White House).
An IR, is typically serialised data describing a NIR (e.g.,
the string ”White House”). This distinction is important,
since they are semantically different and we might want to
describe them separately. In The DataTank, a request to
a URI returns a web document, which is always an IR. We
add a file extension to create a separate URIs for IRs. This
way, users can immediately access the data in their desired
format.

Figure 2: HTTP Request/Response cycle with
dereferencable URIs
Although we determined a clear distinction in URIs, the
question remains: what to respond in case a NIR is re-
quested? To tackle this issue, we respond with a HTTP
303 response, redirecting the user to the corresponding IR
URI. Therefore, we split the Controller into the RController
and the CUDController, as shown in Figure 2. The former
handles all HTTP requests on IRs. It only needs to process
GET requests, since IRs only need to be read. The latter
handles all HTTP requests on NIRs. In case of a GET re-
quest, the URI is rewritten by adding the .about extension, a
HTTP 303 Redirect response is assembled and this response
is send back to the user.

4.2 Ontology mapping

Figure 3: Using ontology mapping to derive RDF

RDF uses classes and properties defined in ontologies for
describing data to a machine. Therefore, we implemented a
way to map the internal data model to ontology members.
This mapping needs to be easily definable, reusable and ex-
ternally changeable. As illustrated in Figure 3, ontology
mapping is done on the PHP class structure, so the result is
the same for every instance. Implementing this raises some
issues. In The DataTank, an instance of the generic class
stdClass is created, to which the fields of a data set are dy-
namically added. As a result, the class definition is only



known at runtime, preventing a straight-forward mapping.
Furthermore, because of the loosely typed nature of PHP,
we do not know in advance which type a certain property
will contain.

To solve these issues and acquire our goals, we chose to de-
scribe the data model in an own ontology. For every member
in the data object, we take the class path and define it as
owl:Class or rdf:Property (depending whether it’s a class or
a property in PHP). This approach facilitates the mappings,
since we can add any ontology member to the class path by
using owl:equivalentClass or rdf:equivalentProperty. An ex-
ample is shown in Listing 1.

@prefix owl:<http://www.w3.org/2002/07/owl#>.
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix foaf:<http://xmlns.com/foaf/0.1/>.
@base <http://datatank.demo.ibbt.be/TDTInfo/Ontology/>.

<developers > a owl:Class
<developers/stdClass > a owl:Class;

owl:equivalentClass foaf:Person .
<developers/stdClass/name > a rdf:Property;

owl:equivalentProperty foaf:name .
<developers/stdClass/lastname > a rdf:Property;

owl:equivalentProperty foaf:lastname .
<developers/stdClass/email > a rdf:Property;

owl:equivalentProperty foaf:mbox .

Listing 1: The ontology of the resource ”developers” with
FOAF mapping in N3

Now that we covered the modeling and mapping, we use
the existing REST architecture to publish this ontology. A
fixed resource Ontology in the package TDTInfo4 was cre-
ated to handle the requests. We can browse the ontology
using this type of URIs: .../TDTInfo/Ontology/<package>
/<classpath>. Every request is treated by the architecture
like a normal resource request, but instead of accessing data
sources, it calls the OntologyProcessor. This class imple-
ments the CRUD structure to manage ontologies. They are
stored in the database and manipulated through RAP.

To visualise our ontology mapping system, we created a
graphical web client called The Semantifier. This applica-
tion interacts with the ontology through the REST API.

4.3 Formatting RDF output

Figure 4: Creating RDF triples by analyzing the
generic object model

When a resource is requested in a certain web format (e.g,
JSON), the generic data object is passed to the right format-
ter (e.g., JSONFormatter) to return the parsed to the user.
We create RDF output using this principle. We created a
formatter for each of the most common notations (e.g., N3,

4the standard package for retrieving system information in
The DataTank

RDF/XML). The serialization is already supported by RAP,
hence we only need to generate a RDF model from the data.
As a result, the generic data object is first passed to the class
RDFOutput, which creates and returns a model.

To create a RDF model, we analyse the generic data object
recursively. While iterating through the object, an instance
URI and class path are constructed for each object or prop-
erty. This class path is used to retrieve the corresponding
mapping from OntologyProcessor. An instance URI, a map-
ping and a value are used to produce an RDF triple, as
shown in Figure 4.

5. USE CASE: OGD WIEN
As an example, we took the hospitals dataset in the JSON
format. By sending an HTTP PUT request to our The
DataTank demo server, supplying the file’s URI as a parame-
ter, we created the resource hospitals in the package vienna.
Once this resource was created, the data can already be
accessed in various formats (e.g., .../vienna/hospitals.

xml). Next, we created an ontology using The Semanti-
fier and mapped Schema.org and Dublin Core concepts to
its fields. This makes the dataset automatically compatible
with all datasets described with Schema.org concepts. By re-
questing an RDF extension, we can get an on-the-fly created
RDF representation of the hospitals in Vienna, each with
their own unique, dereferencable URI and mapped proper-
ties. An article about this use case can be found on the
Open Government Data Wien website5 and live demo can
be found on our demoserver6.

6. CONCLUSIONS
Data owners can benefit from a huge community of consumer
by publishing their data sets as Open Data. The DataTank
is a data adapter that publishes local datasets as a RESTful
Web API. By extending this framework, we added semantic
output for every data set. The REST URIs were exploited
to create a distinction between Information Resources (IR)
and Non Information Resources (NIR). Also, a solution was
implemented for requesting NIRs. We offered a way to easily
describe the data model and corresponding ontology map-
ping. This information is made reusable and changeable by
using the REST interface. Finally, a recursive method was
introduced for creating an RDF model .

7. REFERENCES
[1] T. Berners-Lee. Linked data - design issues, 2006.

[2] V. P. Fadi Maali, Richard Cyganiak. Re-using cool uris:
Entity reconciliation against lod hubs. In Proceedings of
the Linked Data on the Web Workshop 2011
(LDOW2011), 2011.

[3] C. O. Jeffrey Cafferata. Rotterdam open data store
(rods), 2011.

[4] D. D. Rufus Pollock. Ckan: apt-get for the debian of
data. 2011.

[5] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. T.
Jr, S. Auer, J. Sequeda, and A. Ezzat. A survey of
current approaches for mapping of relational databases
to rdf, 01 2009.

5http://data.wien.gv.at/apps/datatank.html (german)
6http://datatank.demo.ibbt.be/vienna/hospitals


