
WikiNext, a JavaScript Semantic Wiki
Pavel Arapov, Michel Buffa

KEWI/Wimmics Group, I3S Laboratory, University of Nice, France.
{arapov, buffa}@i3s.unice.fr

ABSTRACT
In this position paper we present WikiNext1, a semantic wiki we
have been developing for eight months, written in JavaScript,
from database to client code. It uses the HTTP/WebSocket
NodeJS server, several frameworks such as NowJS for
distributing JavaScript objects between server and client code or
MongoDB for persistence. WikiNext proposes a new approach
to deal with classical problems like data storage and
representation (both for semantic data and CMS data), working
with semantics, including and developing small applications
within the wiki, sharing objects between client code running in
the browser and server code, mixing HTTP asynchronous
communication means with synchronous ones like web sockets,
exploit original HTML5 features and finally use an event based
programmatic style on the server side with an dedicated micro
HTTP server.

Categories and Subject Descriptors
K.4.3 [Organizational Impacts]: Computer-supported
collaborative work.

General Terms
Management, Measurement,

Keywords
Wiki, Semantic Web, Social Tagging, Ontology, Web 2.0.

1. Introduction
In the past many semantic wikis have been initiated (see [3] for
an overview), most popular ones are Semantic Media Wiki [8]
or IkeWiki/Kiwi [6], [7]. Our research group developed
SweetWiki [2] that was from the first generation of semantic
wikis (2005-2008), written from scratch in Java, and since 2008
SweetDeki [4], based on an open source industrial wiki engine
named Mindtouch Core. Most semantic wiki engines had to deal
with storage and handling of both semantic data and classic wiki
data together. With WikiNext, we started again from scratch,
trying to take into account emergent technologies and tools that
appeared recently in the web development landscape, including
HTML5 and micro web servers (lightweight web servers
dedicated to a single application). (1) On the client side,
HTML5 proposes new tags for creating web pages, but it also
comes with many new JavaScript APIs that increases the
momentum already existing around this language. For example,
APIs like WebSockets2 for synchronous communication

1 Demo of prototype is available at http://wikinext.herokuapp.com/
2 Even if not officially part of the HTML5 standard, see

http://en.wikipedia.org/wiki/WebSocket.

between web browsers and servers, are very appealing for
implementing some features in a collaborative edition platform,
such as notifications or collaborative synchronous edition.
Around HTML5 and JavaScript, interesting applications
appeared like IDEs written in JavaScript, enabling development
and testing of JavaScript code directly in the browser, like
jsbin.com, jsfiddle.net or Cloud9IDE.com, this latter enabling
the development of JavaScript code both for the client side but
also for the server side. (2) Another trend is server side
JavaScript; indeed, the CommonJS3 specification allows
developers to create different applications that run in JavaScript
interpreters like the V8 engine (from Google) or
SpiderMonkey/TraceMonkey (from Mozilla). For example, the
NodeJS HTTP server is written in Python but embeds the V8
interpreter for developing server side code in JavaScript. (3) The
JavaScript Object Notation (JSON4) also became very popular
and slowly outperforms XML as the format of choice used with
RESTful web services. Another example is the document-
oriented database MongoDB5 that uses the JSON format for
storing data and uses the SpiderMonkey JavaScript interpreter
for handling requests.

In this position paper we present WikiNext, a semantic wiki
currently in early stages of development, written in JavaScript,
which runs on the NodeJS Server and uses the MongoDB
database for storing its data, using JavaScript and JSON in all
the different layers of its architecture.

In the next section we will present the main design principles of
WikiNext and we will show that our approach reduces the need
to rewrite data in different formats (i.e. from SQL to objects on
the server side, from objects to HTML, XML or JSON for the
server-client exchange), a recurrent problem in classic design of
web applications. We will also give some details on how we
integrated an IDE into the wiki, turning it into an application
wiki: users will be able to write documents but also small
applets in JavaScript, directly from the wiki itself. This is quite
interesting for automatic annotation or for integrating dynamic
data from different data sources into a document. In section 3 we
will present WikiNext’s architecture.

2. WikiNext design principles
WikiNext is both (1) a semantic wiki (i.e. a wiki that uses
technologies from the semantic Web6 to embed formalized
knowledge, content, structures and links, that can reason on this
knowledge, etc.) and (2) an application wiki as it can be used
both for writing documents but also for writing small

3 http://www.commonjs.org/
4 http://www.json.org
5 http://www.mongodb.org
6 http://www.w3.org/2001/sw/

applications within the documents. The wiki exposes a
JavaScript API for performing the main tasks from these
applications, like manipulating the wiki data themselves: i.e.
perform automatic annotation of certain keywords in the current
wiki page, auto-tag a document, insert dynamically details about
one user, etc.

For WYSIWYG document editing we use the Aloha in-place
editor7, a recent HTML5 based editor that produces clean
xHTML5 code, as shown in Figure 1, and for writing embedded
applets we rely on the Ace Cloud9 Editor8 (see Figure 2).

Figure 1 : A view of the in place editor.

Figure 2: The JavaScript editor integrated in the wiki.

We use also the Mustache template engine for a clean separation
of the content of a page and its decoration (menus, header, and
footer). When a page is requested, the server computes the
XHTML page and sends it to the browser. Each page contains a
default script that parses the page and builds a JSON
representation of the RDFa metadata present in the page. For

7 http://www.aloha-editor.org
8 ACE : Ace Cloud9 Editor, http://ace.ajax.org/

this task we rely on the VIE framework9. Having important data
available in JSON format makes them easier to handle by
JavaScript code.

Furthermore, the default script opens a web socket connection
with the server for synchronizing the page content. Having such
a synchronous communication stream open makes it easier to
synchronize the page content if other pages share the same
data/metadata, or better, if an application embedded in one page
manipulates global data in the wiki, other pages that share this
data will be updated without the need to be reloaded in the
browser or without the need to use Ajax-based pulling
techniques. One may think that keeping a large number of open
sockets simultaneously (one for each page opened) may prevent
the system from scaling; this subject has been discussed a lot10

but it makes sense to use web sockets for most new interactive
web applications that need to communicate frequently with the
server, as this protocol dramatically reduces the HTTP verbose
protocol (no headers to parse), as well as the establishment and
closure of connections as we would do with Ajax interaction.

This makes also easier to track and notify the activity of one user
and opens the way to synchronous edition by multiple users (we
are currently investigating the ShareJS Operational Transform
library that allows Google-Wave like synchronization).

For modeling wiki resources we reuse the ontology we
developed for SweetDeki (Figure 3), the semantic wiki of the
ISICIL ANR project11. In pink we have the SweetDeki ontology
that models the pages (class sd:WikiPage), the documents
that can be attached (class sd:attachment, relation
sd:attachedTo) or included in a page, revisions (class
sd:WikiPageRevision), and the actions of users (top left
sd:WikiAction), such as collaborative actions. Note that the
classes of the SweetDeki ontology extend or reuse classes from
the popular SIOC12 ontology that models user activity.

Figure 3: data structure of a wiki page.

9 Vienna IKS Editable, http://www.slideshare.net/bergie/vie-

using-rdfa-to-make-content-editable
10 See : http://peterlubbers.sys-con.com/node/1315473
11 http://isicil.inria.fr
12 http://sioc-project.org/ontology

Figure 4: an extract of the ontology used by WikiNext for modeling documents.

Figure 3 shows data that compose a typical wiki page and that
are persisted into the MongoDB database as JSON objects.
From top to bottom we have (a) the standard XHTML of the
page i.e. the page content, (b) RDFa metadata like details about
the author, geo-localization data, tags, etc., and (c) data
generated by applications embedded in the page, i.e. a list of
countries resulting from a request or a web services call to
DBPedia.org. In that case we will persist as a cache the data so
that they can be searched. This cache is re-written each time we
execute the application.

3. WikiNext’s architecture
WikiNext runs on the NodeJS web server with several extension
modules like the Express framework for implementing RESTful
Web Services or socket.io13 for the web sockets server
implementation and NowJS for distributing JavaScript objects
between server and client code over web sockets. We
implemented a classical MVC framework for handling HTTP
requests (GET and POST) but most operations can be done as
well through the web socket connector. The persistence layer
uses MongoDB, a schema-free document-oriented storage, for
its flexibility and its native support of JSON objects14. Choosing
MongoDB allowed us to store wiki data in a natural way,

13 http://www.socket.io, note that while socket.io uses

WebSockets when available, it will choose the best alternative
transport system (without affecting the API) in case the
browser is incompatible (like Flash sockets, Ajax polling,
etc.), enabling the applications to run even on old browsers.

14 MongoDB manages collections of BSON (binary JSON)
objects.

without need to rewrite formats, as we are handling JSON
objects in all the process chain.

Figure 5 shows a diagram of WikiNext’s server side
architecture. Notice that we store both page content (HTML)
and metadata (RDF/RDFa triplets) in JSON.

Currently, we are developing a “knowledge controller” in order
to plug into our system the KGRAM reasoning engine[5] that
will handle in sync with MongoDB semantic metadata and
provide SPARQL capabilities. In that case, MongoDB will act
as a cache for these metadata: basic metadata access will be
handled directly by MongoDB while complex requests will be
delegated to the reasoning engine.

Figure 5: Back end architecture

4. An eight months developer’s experience
WikiNext is an eight months developer’s experience with
emergent tools and technologies, and still a work in progress.
Developing a semantic wiki purely in JavaScript, from database

to client code, can be seen as a challenge, even in a research
group that has already developed two semantic wikis with more
conventional technologies. NodeJS, MongoDB, HTML5 and
semantics with JavaScript draw a lot of interests now and it is
time to give a good return of experience on a mid-size project
development.

5. REFERENCES
[1] AceWiki : http://gopubmed.biotec.tu-dresden.de/AceWiki/
[2] Michel Buffa, Fabien Gandon, Guillaume Ereteo, Peter Sander and

Catherine Faron, SweetWiki: A semantic wiki, Special Issue of the
Journal of Web Semantics on Semantic Web and Web 2.0, Volume
6, Issue 1, February 2008 , Edited by Mark Greaves and Peter
Mika, Elsevier, Pages 84-97

[3] Orlandi, F. (2008). Using and extending the sioc ontology for a
fine-grained wiki modeling. Master’s thesis, Università degli Studi
di Modena e Reggio Emilia.

[4] M.Buffa, N.Delaforge and G.Husson, ”SweetDeki : le wiki
sémantique couteau suisse du réseau social ISICIL”, conférence
EGC 2012 (Extraction et Gestion des Connaissances), 31 Janvier –
4 février 2012, Bordeaux, France.

[5] Olivier Corby and Catherine Faron-Zucker,
The KGRAM Abstract Machine for Knowledge Graph Querying,
IEEE/WIC/ACM International Conference, September 2010,
Toronto, Canada.

[6] Schaffert, S. et Al. (2009). KiWi - A Platform for Semantic Social
Software. In 4th Semantic Wiki Workshop (SemWiki 2009) at the
6th European Semantic Web Conference (ESWC 2009),
Hersonissos, Greece, June 1st, 2009.

[7] Schaffert, S., R. Westenthaler, et A. Gruber (2006). IkeWiki : A
user-friendly semantic wiki. In 3rd European Semantic Web
Conference (ESWC06).

[8] Völkel, M., M. Krötzsch, D. Vrandecic, H. Haller, et R. Studer
(2006). Semantic wikipedia. In WWW ’06 : Proceedings of the
15th international conference on World Wide Web, New York,
NY, USA, pp. 585–594. ACM.

