
WebCL for Hardware-Accelerated Web Applications
Won Jeon, Tasneem Brutch, and Simon Gibbs

Advanced Technology Lab
Samsung Information Systems America

3000 Orchard Parkway, San Jose, California
{won.jeon, t.brutch, s.gibbs}@samsung.com

ABSTRACT

Mobile devices, such as smartphones and tablets, now run full

feature browsers capable of handling rich media and web content.

The emergence of HTML5 makes the browser an ever more

attractive platform for application developers. In addition,

improvements in JavaScript engines are further shrinking the

performance gap between native applications, typically written in

C and C++, and web apps, those written in web-based

technologies (HTML, CSS and JavaScript). However there is still

one area where native applications can show significantly better

performance: compute-intensive functions, such as complex

image and audio processing algorithms, are considered beyond the

reach of JavaScript. This work looks at removing this last

deficiency from the web application platform. Specifically we

show how high-performance compute capabilities of multi-core

CPUs and programmable GPUs can be made accessible to web

applications and then discuss the standardization of this

technology and its implementation for a mobile browser.

Keywords

WebCL, HTML5, WebKit, GPU, OpenCL, WebGL, hardware

acceleration, parallel computing, multicore

1. INTRODUCTION
WebCL is a proposed JavaScript binding to OpenCL [1], which

allows web applications to leverage heterogeneous parallel

computing resources such as multi-core CPU and GPU. It enables

significant acceleration of compute- and (therefore) visual-

intensive web applications such as image/video processing,

advanced physics, gaming, augmented reality, etc.

WebCL is designed to enable high performance, general

purpose parallel processing on multicore/manycore platforms with

heterogeneous processing elements, for web applications. It

provides ease of development, application portability, platform

independence, and efficient access to heterogeneous

multicore/manycore devices through a standards-compliant

solution. WebCL will enable a breadth of interactive web

applications with high compute demands, on platforms with

multicore and manycore resources.

Samsung and Nokia jointly proposed formation of a WebCL

Working Group in Khronos and both companies have made their

prototype WebCL implementations open source. The Khronos

WebCL working group will define JavaScript APIs for interacting

with OpenCL or equivalent computing capabilities. WebCL is

intended to be an interface above OpenCL, which will facilitate

higher level abstractions on top of the WebCL API. The goal of

the WebCL working group is to produce a WebCL specification,

IDL definition, implementation document on guidelines for

layering WebCL on OpenCL, and the definition of conformance

process. Similar to the WebGL standard [2], support for WebCL

may be added to browser engines, using the interface definition

from the Khronos WebCL working group. WebCL requires a

modified browser, OpenCL driver and runtime support, in

addition to GPU and/or multicore processor supporting OpenCL

or similar technologies. Security will remain the highest priority,

and WebCL will be designed for security. The design will ensure

that adding the new functionality into the browser does not

increase its exposure to attacks. The WebCL working group will

work on providing near term provisions to promote robustness,

and will work with hardware vendors, providers of OpenCL

device drivers, and browser vendors for an in-depth solution

supported by hardware/firmware-supported multitasking.

2. Design of WebCL
1

2.1 Design considerations
Our WebCL prototype uses a JavaScript API for interacting with

OpenCL. To ensure portability, the prototype is not biased

towards a specific solution space. Our WebCL prototype is not

intended to be a higher level API to satisfy everyone. There are

several design choices in defining WebCL’s programming model.

Single vs. multiple namespaces: For WebCL API design, a

single namespace means that there is a single WebCL JavaScript

object, whereas multiple namespaces means that WebCL defines

multiple JavaScript objects, in which a subset of WebCL APIs are

defined accordingly. For example, WebGL has a single

namespace, which means that all the WebGL APIs are called from

a single object WebGLRenderingContext.

The OpenCL specification defines ISO C-99-styled C APIs as

well as C++ bindings which internally call underlying C APIs and

introduce little execution overhead. The C++ binding defines

multiple classes for platform, devices, and contexts in its C++

platform layer, and memory objects, buffer objects, images,

samplers, programs, kernels, events, user events, command

queues in its runtime layer.

For our WebCL prototype, we provide an object-oriented

interface similar to OpenCL’s C++ bindings.

Error handling: There are multiple design choices in handling

errors when a WebCL function is called. For example, WebGL’s

error reporting mechanism involves calling getError() and

checking for errors. It is basically reporting errors from the

OpenGL/ES state machine. On the other hand, JavaScript has its

own mechanism to throw JavaScript errors. For example, throw()
creates a user-defined exception or error and Error is a built-in

JavaScript object commonly used in conjunction with throw(). In

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WWW’12Dev, April 16-20, 2012, Lyon, France.

Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

1: Disclaimer: we use the term “WebCL” to refer to Samsung’s WebCL

APIs and prototype implementation hereafter.

addition, JavaScript provides try, catch, and finally statements to

catch errors.

We support a JavaScript-like exception handling mechanism

in the current version to improve compatibility with JavaScript.

Initialization: OpenCL provides a number of APIs for querying

the capabilities of the platform and for selecting and configuring

computational resources. As a result, typical OpenCL applications

contain lengthy initialization sections. For our WebCL prototype,

we provide access to the same initialization APIs as in OpenCL.

The WebCL working group is currently simplifying the

initialization interface, for enhanced portability; however this

aspect of WebCL design is still evolving in the WebCL working

group.

Interface to JavaScript objects: In order for WebCL to

seamlessly process existing JavaScript objects, such as those

representing media content, it has to provide a clean interface to

create, read, and write such objects. For instance, OpenCL

provides clCreateImage2D() and clCreateImage3D() to create a 2D

and 3D image objects respectively. In addition, it has

clEnqueueReadBuffer() and clEnqueueWriteBuffer() to enqueue

commands to read/write from/to a buffer object to/from host

memory, and clEnqueueReadImage() and clEnqueueWriteImage()
for the same purpose on 2D image objects. In JavaScript, a 2D or

3D image object could be represented by either an

HTMLCanvasElement or ImageData element, or a typed array such

as an Int32Array or Float32Array object.

Kernel source vs. binary: In OpenCL, a program executable can

be built using source code or a precompiled binary. Using source

code for WebCL kernels provides code portability whereas the

source code is visible as a human-readable format. On the other

hand, using the binary format of the kernel program could

eliminate steps for runtime compilation, but it could seriously

hinder code portability and increase security vulnerability if the

binary is malicious.

Therefore, for security and portability issues, we only allow

kernel executables built from source code provided as part of the

web page. This design decision may be changed if a portable

binary representation, such as LLVM bitcode, is defined for

kernels. Note that currently the Khronos OpenCL-SPIR sub-group

[3] is discussing a low-level intermediate representation using

LLVM for code obfuscation and security.

2.2 Basic Functionality

The functionality of our WebCL implementation covers creating

OpenCL objects such as contexts, queues, and buffers, and

building and running OpenCL kernels. Our prototype also

supports “WebGL interoperability” which refers to sharing

objects in GPU memory between WebCL and WebGL.

WebCL initialization: OpenCL APIs are accessed from

JavaScript through the WebCLComputeContext class. A WebCL

context is initialized by creating a new WebCLComputeContext
object in JavaScript. Once the object is created, WebCL’s

computing platform, device, and context are created within the

WebCLComputeContext object.

Kernel creation: WebCL Kernels are the main functions that

execute on the computing device(s). Similar to OpenCL, the

source code of the kernel is described in C99-like language and

the corresponding program is created and built by calling

createProgramWithSource() and buildProgram() respectively, The

actual kernel is then created by createKernel().

Memory object creation: Memory objects in OpenCL are

reserved regions of global device memory that can serve as

containers for user data. In WebCL, memory objects are created

from different objects in JavaScript, such as canvas image,

JavaScript image, and typed arrays [4].

Kernel execution: Once the buffer objects used for input and

output data are created by createBuffer(), the data are actually

written from the host memory to GPU memory by calling

enqueueWriteBuffer(). setKernelArg() sets the argument values

for kernel parameters and getKernelWorkGroupInfo() returns

information, such as workgroup sizes, used for the kernel

execution. The actual execution of the kernel is initiated by

enqueueNDRangeKernel().

WebCL clean-up: releaseCLResource() releases all WebCL-

related resources that are allocated. Use of this function is

optional, as the browser frees all the WebCL objects when the

page is unloaded.

2.3 Interoperability with WebGL
3D graphics applications, such as gaming and augmented reality,

are an area where we see great potential for WebCL. On web-

based platforms, 3D graphics is provided by WebGL, so it is

important that WebCL and WebGL do not conflict with each

other.

Fortunately OpenCL is designed for interoperation with

OpenGL and provides APIs for safely sharing buffers with

OpenGL. The shared buffers reside in GPU memory, thus there is

no need to copy data back and forth between host memory and

GPU memory when switching between OpenGL and OpenCL

processing. WebCL/WebGL interoperability builds on that

available for OpenCL/OpenGL. First the application creates a

WebCL context via the createSharedContext() API. The

application can then create a WebCL memory object (buffer) that

is associated with a WebGL buffer via the createFromGLBuffer()
API. When WebCL processes the buffer, it is acquired and then

released by calling enqueueAcquireGLObjects() and
enqueueReleaseGLObjects(), respectively.

Note that WebCL also supports a way of handling HTML5’s

Canvas, Image, and Video elements, so that they can serve as

sources for enqueueWrites*(). Canvas elements can serve as

destinations for enqueueReads*() as well.

3. IMPLEMENTATION
We use WebKit [5] as a codebase for our WebCL

implementation. WebKit is a layout engine designed to allow a

web browser/runtime to render web pages and execute web

widgets/applications. It has been used as a core of popular web

browsers such as Google Chrome and Apple Safari, and runs on

both PC and mobile platforms.

The WebKit engine consists of three main components,

WebCore, JavaScriptCore, and WebKit. WebCore is a layout,

rendering, and Document Object Model (DOM) library for HTML

and SVG (Scalable Vector Graphics). JavaScriptCore is a

JavaScript engine that interprets or JIT (Just-in-time)-compiles

and executes JavaScript. WebKit wraps WebCore and

JavaScriptCore to provide a common application programming

interface (API) to browser or application developers.

WebCL provides a JavaScript binding for OpenCL to web

applications by modifying the internal binding mechanism

implemented in WebCore.

The bridge between JavaScript and OpenCL is the

WebCLComputeContext class. A WebCLComputeContext object

is associated with the current browsing context, specifically

Window object, by being inherited from ActiveDOMObject
object. WebCLComputeContext object is a main object in WebCL

design and implementation, which defines and implements most

of JavaScript APIs which is used by web application developers.

Other WebCL objects such as WebCLContext, WebCLDevice,

WebCLPlatform, WebCLProgram, WebCLKernel,
WebCLMemObject, WebCLCommandQueue, etc. basically

maintain native OpenCL objects as member variables and are

being used as arguments of WebCL APIs defined in

WebCLComputeContext object.

We initially integrated our WebCL code to WebKit revision

78407 (release date: February 10, 2011) and the most recent

WebCL implementation is integrated to WebKit revision 101696

(release date: December 2, 2011). Our code is open-sourced and

available at http://code.google.com/p/webcl/.

4. PERFORMANCE EVALUATION
Currently our WebCL prototype is developed with Apple’s Xcode

and running on Mac OSX 10.6/10.7 with NVIDIA and AMD’s

GPU which has OpenCL 1.0/1.1 support. However the code is

fully portable, as WebKit is available on most of the operating

systems, and OpenCL is supported on different computing

processors.

The platform used for WebCL prototyping and benchmarking that

we use is MacBook Pro with Intel Core i7 2.66GHz, 8GB of

memory, and NVIDIA's GeForce GT 330M GPU. The following

three WebCL examples are presented to compare the

computational performance of JavaScript and WebCL.

Sobel filter (Fig. 1): For a given image, WebCL applies the

Sobel filter which is commonly used within edge detection

algorithms.

N-body simulation (Fig. 2): WebCL simulates the dynamics of

given number of particles, calculating the positions and velocities

of the particles under the influence of mutual gravitational forces.

Deformable body simulation (Fig. 3): WebCL deforms the

surface of spheres using a fractal noise function; WebGL renders

the deformed spheres with shaders for Fresnel and reflective

effects.

Fig. 1. Sobel filter (top: JavaScript, bottom: WebCL)

Fig. 2. N-body simulation (left: JavaScript, right: WebCL)

http://code.google.com/p/webcl/

Fig. 3: Deformable body simulation (WebCL)

The performance comparison of JavaScript vs. WebCL is

summarized in Table 1. The performance metrics used are: the

computation time in Sobel filter, and the frame rate in N-body

simulation and deformable body simulation.

TABLE 1

PERFORMANCE COMPARISON OF JAVASCRIPT VS. WEBCL ON PC

(INTEL CORE I7 2.66GHZ, 8GB MEMORY, NVIDIA GEFORCE GT

330 M GPU)

Demo Name JavaScript WebCL Speed-up

Sobel filter

(with 256x256 image)

~200 ms ~15ms 13x

N-body simulation

(1024 particles)

5-6 fps 75-115 fps 12-23x

Deformable body

simulation(2880 vertices)

~ 1 fps 87-116 fps 87-116x

The video clips of N-body simulation and deformable body

simulation are available on YouTube at

http://www.youtube.com/user/SamsungSISA.

5. CONCLUSION
WebCL is a JavaScript binding to OpenCL, which allows web

applications to leverage the compute power of multi-core CPUs

and GPUs. We are helping drive WebCL standardization in

Khronos, and have open sourced a WebCL prototype running in

WebKit. Our prototype can be easily ported to smartphones and

other devices using WebKit-based browsers.

6. ACKNOWLEDGMENTS
The authors would like to thank Sang-bum Suh and Alan Messer

for support of this project plus Niranjan Patil and Siba Samal for

their aid in implementing our WebCL prototype.

7. REFERENCES

[1] Khronos OpenCL Working Group, 2011. The OpenCL

Specification – Version 1.1.

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

[2] Khronos Group, 2011. WebGL Specification- Version 1.0.

https://www.khronos.org/registry/webgl/specs/1.0/.

[3] Forshaw, J., Stone, P., and Jordan, M. 2011. WebGL – More

WebGL Security Flaws, June 2011.

http://www.contextis.com/research/blog/webgl2/.

[4] Khronos, 2011. Typed Array Specification.

http://www.khronos.org/registry/typedarray/specs/latest/.

[5] The WebKit Open Source Project. http://www.webkit.org.

http://www.youtube.com/user/SamsungSISA
https://www.khronos.org/registry/webgl/specs/1.0/
http://www.contextis.com/research/blog/webgl2/
http://www.khronos.org/registry/typedarray/specs/latest/
http://www.webkit.org/

