
Towards Declarative 3D in Web Architecture
Jean Le Feuvre

Telecom ParisTech; Institut Telecom; CNRS LTCI
46, rue Barrault 75634 PARIS CEDEX 13

jean.lefeuvre@telecom-paristech.fr

ABSTRACT
The recent WebGL integration in major web browser has open the
way to many 3D applications as well as high-level libraries
targeting 3D content developers. While most of these libraries
provide solid grounds for interoperable 3D on web browsers, one
might wonder if their use could not be simplified both in terms of
processing overhead and 3D description syntax; looking beyond
these issues, if there is room for a declarative 3D language for
web architecture, its features should be well defined to ensure its
success. In this paper, we review some use cases, some existing
technologies and some drawback of existing tools in order to
derive some requirement for the upcoming declarative 3D
language for the HTML ecosystem.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND
PRESENTATION]: User Interfaces – Graphical user interfaces
(GUI), Standardization, Windowing Systems.

General Terms
Standardization, Languages.

Keywords
Declarative, 3D, mixed 2D and 3D, WebGL, Stereoscopic
Displays.

1. INTRODUCTION
Over the last twenty years, a growing number of technologies for
describing, animating and controlling 3D objects or 3D worlds
have appeared, and sometimes disappeared. Whether imperative
or declarative, most of these technologies have had success in
some market areas, but it is hard to identify the "big winner": the
one technology to be used in any business environments. With the
growing importance of the Web architecture as an underlying
platform for many applications and market places, enabling 3D on
the web has become a major part of recent web developments.
The most noticeable 3D "newcomer" in the web is with no doubt
WebGL [1], enabling web browsers a fast yet simple access to the
device's GPU through the OpenGL ES 2.0 API [2]. Many
interesting projects have been launched around this powerful API,
using imperative approaches through JavaScript (JS), like the
promising GLGE, SceneJS, Three.js or PhiloGL. Declarative
approaches have also surfaced; we can cite X3DOM, an X3D
implementation in JavaScript, or XML3D, a JS implementation of
a 3D scene graph closely related to web concepts of HTML and
CSS. It is worth notifying that even imperative approaches, such
as game engines, usually require some declarative way of
expressing the 3D models or levels design, and declarative

approaches can already be seen in most systems, using XML or
JSON parsing with XMLHttpRequest [3]. This paper does not
aim at describing the different solutions already available [4] for
integrated Web and 3D, nor to start yet another discussion on
declarative versus imperative approaches: each solution has its
pros and cons, but each might be needed depending on the
application requirements. This paper will therefore attempt to
focus on requirements that would make a browser-native
declarative 3D support more appropriated than existing JS-based
solutions.

As part of its research work on scene description technologies,
Telecom ParisTech multimedia lab has developed GPAC [5], an
open-source multimedia player. The research topics cover mainly
2D scene descriptions such as SVG or BIFS; it also covers some
3D aspects, through VRML based technologies such as X3D or
BIFS. One specific topic of this work was on integrating these
different scene representation technologies within a single
graphics engine and mixing them in one multimedia presentation.
This work was demonstrated in [6]. The purpose of this paper is to
share some of the experience acquired during the development of
this hybrid 2D/3D renderer, along with some more requirements
derived from academic work related to this topic. These
requirements are intended to be generic and uncorrelated with
final syntax and future design choices such as handling of
animations or usage of CSS.

This paper is organized as follows: in Section 2, we will briefly
advocate for declarative 3D versus existing tools, and draft a first
set of basic requirements. In Section 3, we will investigate some
specific requirements around the topic of mixed 2D and 3D; in
Section 4, we briefly investigate some aspects of multi-view
rendering for auto-stereoscopic displays and derive some
requirements for the upcoming Declarative 3D task. Section 5
finally concludes this paper.

2. Advocating for Declarative 3D
2.1 On scene graph
Virtual worlds are usually complex 3D environments with a large
number of independent objects presented together on the screen.
Whether each object is made of a single data structure (or node) or
of a collection of structures, all 3D engines manipulate the
collection of objects as a graph representing the scene to display,
or scene graph in the usual terminology. This graph describes the
relationship between objects, with more or less details. The basic
level will be description of spatial relationships (transformation
matrices), but complex scene graphs may also include
interactivity relationship (scripting), temporal relationships
(animations), physics relationships (collision, material
elasticity...). Obviously, the more information a scene graph
provides on the objects in the scene, the more complex and time
consuming the rendering of the scene may grow. Scene graph is
an important part of the interactive application logics, as it is
usually the place where all software optimizations are done, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WWW2012, April 16–20, 2012, Lyon, France.
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

as matrix stack handling, object picking, partial traversal of the
graph... Benchmarks done in [7] show that existing JS 3D engines
have hard times competing with a native scene graph and OpenGL
implementation, but we should however keep in mind that the JS
libraries tested are generic purposes libraries, rather than on-
purpose designed ones. This is maybe one of the most challenging
areas for DEC3D: obviously, declarative 3D implies usage of a
scene graph, however it shall have clear advantages over JS ones,
whether JSON or XML or binary, in order to be attractive to
application designer. Indeed, a native scene graph is "frozen", and
the implementation is not in the hands of the developer: if some
design of this scene graph does not suit his needs, he will likely
move to a script-base approach. One way to avoid such situation
is to ensure modularity of the scene graph design. The focus of
this paper is not to dig into the specific features supported by the
scene graph, as existing standards such as X3D already cover a
broad set of common features for DEC3D. It should however be
noted that DEC3D is intended for integration with Web
technologies, and as such could use a CSS-oriented design for
styling, transformations and script-less animations such as SVG
animations. Such features should typically be made configurable
in the scene tree to optimize rendering routines, discarding for
example the CSS inheritance phase or the animation module.
From this remark, the following requirements are derived:

REQ1: DEC3D scene graph shall be modular; in particular, it
shall allow an author to turn off unneeded features from the graph
itself during the traversing of the scene tree (e.g. lighting, color
transformations, collision detections, animations...), while still
allowing for dynamic modifications of desired features,

REQ2: DEC3D scene graph shall be extensible, in particular it
shall allow an author to design its own nodes; this should be done
either programmatically or through Proto/XBL concepts.

2.2 On 3D Models
While WebGL provides direct and fast access to the GPU, most
existing WebGL frameworks need to handle the objects they are
rendering by themselves. This includes object geometry
(polygons, triangles sets/fans/...), appearance (material and
texture), positions (camera and model transformations), lighting
and other graphical effects (shadows, particle systems...). Once
these properties are assigned to an object, rendering is achieved
through WebGL in near native speed. Most if not all these
properties are loaded and manipulated in JavaScript, which can
cost time. The loading of this properties from a model description
(OBJ, Collada...) relies, when done in JS, on XHR [3] for text-
based description (JSON, XML...), and additionally ByteArray
objects for binary-coded models such as MPEG-4 3DMC ones
[8]. Reaching high performances with such JS APIs remains
challenging, as shown in [9], JS increasing the load time of very
complex models as used in CAO or medical applications. Having
a native support for model importing will drastically reduce
loading times of many models; such a feature should however
retain compatibility with pure WebGL imperative programming,
in order to respect the specific needs of the application developer.
We can therefore derive the following requirements:

REQ3: DEC3D shall support native loading of various model
types, either textual or binaries, from any local or remote
location; an appropriated MIME type should identify model
formats,

REQ4: DEC3D shall define ways for natively loaded models to be
used in a WebGL environment; for example, API/ID to retrieve

the WebGLBuffer from the model and reference it in a shader
program.

2.3 On WebGL and DEC3D
As stated previously, it is likely that relying only on a declarative
scene graph may not suits the designer needs, for example when
some default rendering algorithm in the DEC3D language cannot
be easily expressed in a declarative way (dynamic shader
design...). In the same way that OpenGL ES moved from a hard-
wired graphical pipeline interface to a programmable-only GPU
control, we believe that DEC3D should take into account the
possibilities of unthought-of use cases and provide WebGL
fallback to the developer; this will ensure a future-proof, flexible
design and will encourage authors to use the language. This can
be expressed by the following requirements:

REQ5: DEC3D shall allow an author to use only some native
functionalities of the scene graph, for example object picking,
while overriding other functionalities with WebGL code, for
example drawing;

REQ6: DEC3D shall allow an author to use some native
functionalities of the scene graph in parts of the scene tree while
using custom behavior in other parts through WebGL callbacks.

3. Integration of 2D and 3D
One thrilling aspect of DEC3D is its usage in scenarios where 2D
(HTML, SVG) and 3D (DEC3D, WebGL) objects are used at the
same time, and communicating with each other. When designing
an integrated renderer for SVG/BIFS/X3D, we have faced some
issues that DEC3D could be confronted to, which are detailed in
this section.

3.1 Rendering Contexts for 2D and 3D
Integrating 2D and 3D descriptions in an HTML scene can seem
straightforward at first glance, but raises the same design issues as
integration of SVG in HTML: HTML is a flow-layout scene
description based on relative positioning of blocs or boxes, and is
not well suited to host absolute positioning languages in its flow.
The usual approach to solve this problem is to define a rendering
region, similar to canvas, where the hosted language paints itself.
This is for example the case when integrating SVG in HTML, one
cannot simply insert an svg <circle> element in the flow, it has to
be inside an <svg> element assigning a local coordinate system
and bounds for the drawing area, in order to perform the HTML
flow layout. Note that the bounds do not necessarily have to
define a clipping area, e.g. the hosted content could be drawn
outside this area. This approach is very similar to the canvas
approach, where the size of the canvas region is exactly defined in
terms of CSS dimensions so that flow layout can happen.

REQ7: DEC3D shall support drawing of 3D shapes and scene
elements within the HTML flow layout, and shall not enforce the
entire scene management to be in a 3D context.

On the other hand, some applications may wish to be full-window
or full-screen 3D application, with no HTML layout above the 3D
part. This is typical in games and virtual worlds, but other use
cases may require this.
REQ8: DEC3D shall support using the entire HTML window as
its 3D rendering area

3.2 Events and Coordinate System
The major inconvenience when handling a document mixing 2D
and 3D content is the event system. The event system defines how

user events (mouse, keyboard, HMI devices), network events or
other notification events are handled in a scene graph.
Unfortunately, each standard has its own way of defining its own
event system, and most of the time these are not compatible.
VRML/X3D uses types events following the node field data types,
and ROUTE mechanism to copy events from their source to any
destination desired; events are generated by dedicated UI sensor
nodes, such as TouchSensor or ProximitySensor. SVG and HTML
use the DOM Event model, where events are generated with no
explicit sensor but rather "appear" at any visible/geometry node
and bubble up the scene graph from this node to the root node.
These events are not typed in terms of XML data types, but have
an IDL definition allowing manipulation of these events in script.
Without scripting, interactivity is much more limited. In order to
allow a simple design of the application mixing 2D and 3D
content, we can add the following requirement:

REQ9: DEC3D shall use the DOM event model in order to
cohabit with SVG or HTML applications.

Note that this requirement does not exclude usage of existing
VRML/X3D sensors such as ProximitySensor or SphereSensor,
but will rather transform them into grouping nodes catching
simple mouse or keyboard events and firing new, 3D-specific
events if desired.

Another issue faced with 2D/3D integration is the handling of
coordinate systems. By default, most 2D languages use a raster-
aligned coordinate system, with the origin (0,0) at the top-left of
the canvas and the Y-axis going downwards; on the opposite,
most 3D languages use a 3D Cartesian coordinate system, with
the origin (0,0) at the center of the canvas, the Y-axis going
upwards. While the handling of such differences is annoying for
the implementation (Y scaling and translations happening all over
the place), it becomes even trickier for the application designer.
DOM-based 2D scene representations do not expose hit
coordinate at hit point. On the opposite, 3D scene representation
events usually carry much more information than screen and
client coordinate. Getting hit point coordinate in 3D space is a
basic use case, and getting the value of the normal or the texture
coordinate at the hit point is also common when dealing with
interactive textures. Scripting approaches such as getScreenCTM
in SVG are clearly not sufficient to compute these details, as they
would require computing in JS mouse ray and shape intersection
to compute this data, and insert flip/translation matrix when
switching between DEC3D and SVG. In order to simplify
handling of clicking on / picking of shapes in an application
mixing 2D and 3D, a unified system for retrieving hit coordinates
in the local coordinate system:

REQ10: DEC3D shall use a coordinate system for events aligned
with DOM Event coordinate system and provide a simple way of
accessing pointing device coordinates in the local coordinate
system.

REQ11: DEC3D shall have support for hit point coordinate,
texture coordinate and normal value at hit in a DOM Event
compatible way; this feature should only be enabled when
advanced interaction is required.

3.3 Offscreen Rendering
One of the most compelling use case for 2D and 3D integration is
getting more and more widespread in window manager of various
operating systems through the terminology "Compositing" or
"Composite Desktop": being able to use the output of any
application as a texture for another application. WebGL allows for

this by using the HTML Canvas object in 2D mode for texture
creation, then passing the texture to GPU through WebGL's
glTexImage2D. Note however that drawing web content into a 2D
canvas is not allowed in most browsers, hence not yet
interoperable.

Figure 1 - Integration of SVG menu, X3D model and MPEG-4
There are endless possibilities with the ability to transform part of
a sub-tree into a texture usable in 2D or 3D contexts, especially
for non-linear transformations. Having a declarative mean to
define such textures / offscreen rendering areas feel quite
intuitive, as using WebGL and JS to implement such simple data
transfers to GPU texture units seems quite an overhead. It should
be noted that such features are present in MPEG-4 BIFS, through
CompositeTexture nodes, as shown in Figure 1. These elements
also allow for interactions and react to mouse and keyboards
events. Existing layering elements such as HTML <div> or inner
<svg> could be a base for such a design.

REQ12: DEC3D shall have support for simple definition of
offscreen rendering areas for 2D or 3D DOM content, and reuse
of these areas as 3D textures or 2D patterns in SVG.
REQ13: DEC3D shall have support for offscreen rendering of
part of the DOM tree, with support for DOM events in these sub
trees.

4. 3D Displays
The past few years have seen the regain of interest for 3D
entertainment using the human binocular vision system. 3D
displays are becoming more and more widespread, whether for
mobile devices (phones, portable gaming devices) or for home
entertainment (TV, picture frames...).
The current focus of the industry is to achieve interoperable
playback of video on these devices, through a various set of
standards ranging from frame packing in AVC (two views in side-
by-side or top-and-bottom packed in one frame), to more modern
approaches combining video and depth / disparity maps, in order
to generate multiple views from arbitrary viewer positions, as
shown in Figure 2.

The next logical step will be to achieve interoperability of
applications using such displays, for any possible characteristics
of the display such as the number of views available or the
optimal viewing distance. We therefore think the following
requirement is reasonable:

REQ14: DEC3D shall have support for 3D displays and auto-
stereoscopic interactive services.

Figure 2 - Five-views synthesis from video and depth

4.1 Depth for 2D
Existing 2D scene descriptions such as HTML or SVG usually
work with fixed z-order in the scene tree, which can be altered
through scripting mechanism by removing objects and inserting
them back at the desired layer. These languages typically follow
the painter algorithm when drawing their shapes, and do not take
into account any depth information: the nodes are drawn in the
order they are found in the scene tree. While this model is fine in
2D space, it is no longer appropriated when designing interfaces
for 3D displays, where depth (or z) is an inherent dimension of the
service, as are horizontal and vertical positions. On the other
hand, defining a complete 3D rendering context for the sole
purpose of displaying an HTML button with a depth effect (screen
pop-out, back and forth bouncing at the screen surface) seems
quite an overhead for the author. This situation will only get
worse if a 2D area with a depth effect also has a 2D sub-area with
another depth effect. Simple extensions such as depth / z offset
and scaling for 2D objects will be sufficient for most effects, but
more powerful tools such as CSS 3D transforms could also help
here.

REQ15: DEC3D shall support simple ways of assigning a depth
or z value to a 2D HTML or SVG area; depth values shall be
cumulated in a hierarchical way, as are regular 3D
transformation matrices.
Another interesting feature in the years to come will be the ability
of the device hardware to use depth-image along with texture data
to generate image-dependent viewpoints. Depth-data handling
also make its ways into UI systems with devices such as the
Microsoft Kinect, and it won't be long until TV are equipped with
such cameras. This naturally leads to believe that introducing
DIBR (Depth-Image Base Rendering) into DEC3D seems an
interesting path.

Figure 3 - Synthesizing depth map from SVG gradients

As explained in [10], we believe that using SVG or canvas 2D to
generate texture data that could be used as depth data for other 2D
objects, through simple component transfer rules as shown in
Figure 3, is a powerful way of authoring transition effects for 3D
displays.

REQ16: DEC3D shall have support for Depth-Image Based
Representation, in order to allow for multiple view generation of
2D objects or areas in the content.
REQ17: DEC3D shall be able to generate synthetic depth maps
from the different graphical primitives in the content, whether 2D
or 3D, and whether defined in DEC3D or external to its
namespace.

4.2 Virtual Camera Calibration
One important aspect of rendering for 3D displays is that the
depth effect may not be exactly tied to the perspective settings of
the 3D environment, and authors may decide to center a dedicated
object on the screen plane, or before or behind the screen, without
changing virtual camera settings. In other words, an author may
decide to change the vergence point of the different cameras used
during multiview rendering passes. Moreover, most of existing 3D
languages do not take into account camera parameters for
multiview rendering, such as camera displacement between views
(circular, linear, off-axis), which may be modified by an author
depending on its application type. This leads to non-
interoperability between implementations. If DEC3D includes
support for multi-view displays, it must therefore fulfill the
following requirement:

REQ18: DEC3D shall be able to define the camera parameters
used during multi-view generation, such as for vergence point
(screen plane) location or camera displacement type.

5. Conclusion
In this paper, we have exposed our views on some aspects a
declarative 3D language for web architecture should cover. More
specifically, we have reviewed some of the difficulties
encountered during the development of a mixed 2D and 3D
multimedia renderer. We have also exposed some limitations in
existing declarative technologies when designing content for auto-
stereoscopic displays. Based on this analysis, we have derived
some requirements for such a language and hope to contribute, in
the near future, to DEC3D activity, both in terms of requirements
and developments.

6. ACKNOWLEDGMENTS
Part of this work has been financed by the French-funded ANR
project CALDER.

7. REFERENCES
[1] WebGL, http://www.khronos.org/webgl/
[2] OpenGL ES 2.0, http://www.khronos.org/registry/gles/
[3] XHR, http://www.w3.org/TR/XMLHttpRequest/
[4] http://www.khronos.org/webgl/wiki/User_Contributions

[5] Le Feuvre, J., Concolato, C., and Moissinac, J. 2007. GPAC:
open source multimedia framework. In Proceedings of the
15th international Conference on Multimedia (Augsburg,
Germany, September 25 - 29, 2007). MULTIMEDIA '07.

[6] Concolato, C. and Le Feuvre, J. 2008. Playback of mixed
multimedia document. In Proceeding of the Eighth ACM
Symposium on Document Engineering (Sao Paulo, Brazil,
September 16 - 19, 2008). DocEng '08. ACM, New York,
NY, 219-220. DOI=
http://doi.acm.org/10.1145/1410140.1410185

[7] http://granular.cs.umu.se/browserphysics/?p=7

[8] B Jovanova, M Preda, and F Preteux, “Mpeg-4 part 25: A
graphics compression framework for xml-based scene graph
formats,” Signal Processing: Image Communication, vol. 24,
pp. 101–114, 2009.

[9] http://blog.n01se.net/?p=248

[10] http://svgopen.org/2010/papers/54-
SVG_Extensions_for_3D_displays/

