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ABSTRACT

The emergence of social tagging websites such as Last.fm
has provided new opportunities for learning computational
models that automatically tag music. Researchers typically
obtain music tags from the Internet and use them to con-
struct machine learning models. Nevertheless, such tags are
usually noisy and sparse. In this paper, we present a prelim-
inary study that aims at refining (retagging) social tags by
exploiting the content similarity between tracks and the se-
mantic redundancy of the track-tag matrix. The evaluated
algorithms include a graph-based label propagation method
that is often used in semi-supervised learning and a robust
principal component analysis (PCA) algorithm that has led
to state-of-the-art results in matrix completion. The results
indicate that robust PCA with content similarity constraint
is particularly effective; it improves the robustness of tagging
against three types of synthetic errors and boosts the recall
rate of music auto-tagging by 7% in a real-world setting.

Categories and Subject Descriptors

H.5.5 [Sound and Music Computing]: Methodologies
and techniques, Systems

General Terms

Algorithms, Performance

1. INTRODUCTION

Development of effective technologies to deal with large

volume of multimedia objects is a fundamental applied-research

target for our current digital society. Music, as one of the
involved multimedia modalities, has attracted specific re-
search that, during the last decade, has made it possible
to extract musical information from audio files or from text
documents dealing with musical issues [8]. Applications such
as music recommendation, playlist generation or finding mu-
sical mates can be addressed thanks to different combina-
tions of state-of-the art techniques of music audio analysis,
text analysis, network analysis and knowledge representa-
tion. In this context, a frequent distinction can generally

*This work was conducted while Yi-Hsuan Yang visited the
Music Technology Group of the Universitat Pompeu Fabra.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,

and personal use by others.
WWW 2012 Companion, April 16-20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

Dmitry Bogdanov, Perfecto Herrera,
Mohamed Sordo
Universitat Pompeu Fabra
Barcelona, Spain
{dmitry.bogdanov, perfecto.herrera,
mohamed.sordo}@upf.edu

be made between content-based music analysis and retrieval
and text-based music analysis and retrieval. Features for
the former (e.g., spectrum, timbre, rhythm, pitch, tonality)
are extracted from audio information with different levels
of reliability and effectiveness. We nevertheless are still far
from a complete or even acceptable representation of the
musical features that humans are able to compute and use
in order to perceive, enjoy or describe a musical excerpt.
Several limitations restrict its practicability. Firstly, its pre-
cision is usually unsatisfactory because of the semantic gap
between computable audio music features and high-level se-
mantic concepts. Secondly, a proper music knowledge rep-
resentation requires a multi-feature, multidimensional and
multi-resolution approach (and, currently, this is hardly fea-
sible or authors prefer using simpler paths). Thirdly, content
that is present in the audio does not exhaust all the informa-
tion associated with it, as there are contextual and cultural
data that have to be sought outside the audio (e.g., in texts,
images or in listener behaviors). Content-based music anal-
ysis and retrieval makes possible to search by example (us-
ing audio-based similarity) or to retrieve cover versions of a
song, for example. In contrast, tag-based music information
retrieval solely adopts text information to carry through the
audio music indexing and search [20]. Compared with audio
information, text is essentially a simplified representation of
music and audio contents that benefits of a certain low di-
mensionality (standard listeners do not use more than some
hundred tags to describe music) and of its semantic charac-
ter (hence helping to bridge the semantic gap, up to a certain
point). Combining content-based and text-based strategies
for music retrieval has been shown to increase the efficacy
of music information retrieval (MIR) systems and the satis-
faction of their users, compared to narrow strategies dealing
exclusively with one or another [15,40].

Text information used for music retrieval can be acquired,
for a given song, from different sources: existing metadata
embedded in the files, surrounding text in web pages, lyrics,
and user tagging. Especially with the prevalence of mu-
sic recommendation and music sharing communities such as
Last.fm,! Soundcloud,? or Freesound® which host vast col-
lections of music and audio files with user-provided tags,
tag-based music retrieval has become potentially popular
and practical in different scenarios aimed to different lis-

"http://www.last.fm/
?http://soundcloud. com/
Shttp://www.freesound.org/
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tener’s needs [20]. Contrasting to the other text sources,
tags are created and assigned “socially” (i.e., in a process of
multi-way negotiation of meaning between each individual
and the community he/she is belonging to). This evolvable
social meaning negotiation is probably one of the paths to
revealing aspects of the collective mind that emerges when
remote people share musical concepts and content by means
of information and communication technologies [13,37].

The social nature of this sharing process creates a new
situation with new challenges [16]. For example, the lack of
formal editorial processes often results in poor quality tags.
We can observe that sometimes tags describe a specific mu-
sical aspect happening in a specific temporal moment (e.g.,
“guitar solo”) [23], while in other cases tags are very impre-
cise (e.g., “seen live”) and they may not even refer to musical
content but to highly personal and subjective experiences
with that musical excerpt. Tags also tend to have uneven
densities (i.e., some content items may get many tags and
a large support for each tag while many items will get very
few; some tags will be very popular while many of them
will not). Additionally, many music files are incompletely
tagged and, from the existing community-based tag vocabu-
lary, only a few of the potentially correct tags have been used
for a specific file (this is sometimes referred to as the weak la-
beling problem [38]). Practical constraints (the huge files-to-
taggers ratio) impede an accurate and complete textual de-
scription of music content by human listeners/taggers. Sys-
tems that are able to capitalize on existing robust knowledge
about musical content, textual musical information, and so-
cial computing [9, 32, 43|, in order to refine tags (i.e., add
potentially correct but currently unassigned tags and wipe
wrongly assigned tags) are highly desirable for developing
powerful music retrieval systems and applications. Because
of that, music tag propagation has become a typical prob-
lem in music information research. Here, though, we address
what could be considered as a pre-requisite for the success-
ful propagation of tags: maximizing the quality of available
tags. This has been called “retagging” in the domain of im-
age processing [22,50] and, up to our current knowledge, has
not been addressed for music retrieval yet.

Formally speaking, while music tagging is often described
as a process that manually or automatically assigns tags
to music objects (could be artists, albums, tracks, or seg-
ments of a track) from a vocabulary of music tags, music
retagging is an automatic process that refines the raw, orig-
inal tagging of music by exploiting the intrinsic structure of
the music content space and the induced music tag space to
modify the assignment and structure of tags such that a mu-
sic object can be better identified, catalogued, and retrieved
in the refined tag space. Retagging modifications comprise
enriching, denoising or assessing confidence of content-tags
association measures, in addition to merging or removing
tags. Fig. 1 shows a schematic diagram of music retagging.

The goal of this paper is to set up a framework that em-
ploys and quantitatively evaluates music retagging. Specif-
ically, we investigate the use of label propagation [48] to
exploit the content similarity of music and the use of robust
principal component analysis [21] to find a low-dimensional
structure of the music tag space. These two algorithms can
be readily applied to a raw music tagging without extra re-
quest of supervision or affiliated metadata. Our experiment
on refining the human tagging of music tracks shows that re-
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Figure 1: A schematic diagram of music retagging.

tagging indeed improves the quality of tag assignment and
facilitates applications such as tag-based music retrieval.

The rest of the paper is organized as follows. Section 2
reviews the related work on music tagging and image tag
refinement. In Section 3, we introduce the music retagging
framework and discuss the properties of music that can be
taken into account. Section 4 describes the label propaga-
tion and robust principal analysis algorithms that can be
employed for music retagging. Experimental results on two
music auto-tagging datasets are reported and analyzed in
Section 5. Section 6 concludes the paper.

2. RELATED WORK

Our work is motivated by the research on image tag re-
finement, which is receiving increasing attention in the com-
puter vision community. Existing approaches usually con-
sider both the semantic correlation between tags and the vi-
sual similarity between images and use graph-based models
such as random walk with restart [42] or multi-graph rein-
forcement [14] to refine tags. Some approaches estimated tag
correlation directly from the original tagging matrix (e.g.,
tag co-occurrence) [22]|, while others proposed the use of
external resources such as WordNet, Wikipedia, or Google
since the tag assignment in the original tagging matrix can
be imprecise and incomplete [11,35,50]. Robust principal
component analysis has also been utilized for image tag re-
finement by Zhu et al. [50], where an optimization framework
based on accelerated proximal gradient is proposed. We also
utilize this framework in our study (cf. Section 4.3).

To our best knowledge, few attempts if any have been
made to address music retagging. Music retagging is dif-
ferent from image tag refinement at least in the following
aspects: First, music has a temporal dimension and some
tags assigned to a song may be only associated with a short
segment of the song (e.g., “saxphone solo”) [23]. Second, it is
more difficult to measure the semantic correlation between
music tags because many of them are fairly specific (e.g., “a
dominant bass riff,” “a jazz waltz feel,” “interweaving vocal
harmony,” or “lyric-centric composition” [38]) or subjective
(e.g., “happy,” “sad,” “weird,” or “going to sleep” [16,41,47]).
Third, music is a complex phenomenon and there can be
multiple facets, such as genre, instrument, mood, and acous-
tic quality, underlying a folksonomy of music tags [35].

The automatic classification of music audio items in terms
of high level concepts such as genres and moods is sometimes
termed “auto-tagging.” Classification is carried out by learn-
ing models automatically from the mapping between (low
level) audio features and semantic labels, or tags. A number
of approaches have been proposed in the literature [3]. Most
of them rely on the bag-of-frames approach [1,44] whereby
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audio features, after being computed on a short-time ba-
sis, are aggregated into a “bag” using their first statistical
moments. Finally, an optimized small subset of features is
used to train a classifier, using a database of labeled /tagged
audio excerpts. Tag databases can be obtained from differ-
ent sources [39]: conducting human surveys (e.g., CAL500),
deploying games with a purpose (e.g., MajorMiner?, Mag-
natagatune®), collecting web documents or harvesting social
tags (e.g., Million Song Dataset®). In the last few years,
there has been a growing interest in the use of two-stage
algorithms [24]. Typically, a two—stage algorithm uses the
output of a content—based algorithm as input feature vec-
tors to model tag co-occurrences in the vocabulary [2]. A
number of authors report on the performance improvements
using this method [26,28].

3. MUSIC RETAGGING

Given the raw music tagging matrix Y, either from human
tagging or music auto-tagging, the objective of music retag-
ging is to generate a matrix A with better quality in tag
assignment and thereby the semantic description of music
objects. The raw tagging matrix consists of the tag assign-
ment Y € {0,1}"*™ of m tags {w;}jL; from a vocabulary
of music tags to n music objects {d;}i—,, such that Y;; =1
if the tag w; is associated with the music object d;. The
retagged matrix A is typically of the same dimensionality of
Y, but one can employ some algorithms to merge relevant
tags or remove unimportant tags to reduce the size of the
tag vocabulary. In this work we do not attempt to modify
the tag vocabulary and define A € R™*™ such that A;; de-
notes the confidence score of the association between w; and
d;. The retagged matrix A can be converted to a binary one
if necessary by for instance selecting the top K tags with
highest confidence scores for each music object.

We exploit the following properties for retagging,

e Content similarity. Music objects similar in con-
tent are typically associated with similar tags. This
property is frequently exploited in current music auto-
tagging systems that seek a correspondence between
music content space and music tag space. Once the
correspondence is learnt, one can propagate tags to a
previously un-annotated song by referring to its sim-
ilar songs. Content similarity can be measured with
respect to audio signal content such as timbre, rhythm,

melody, and harmony, or with respect to affiliated meta-

data such as artist, album, genre, locale, release-year,
or popularity, just to name a few.

e Low-rank. Due to the semantic redundancy of the de-
scriptors (tags) we use to annotate music, it is possible
to approximate the music tagging space by a smaller
subset of “latent” tags derived from the original space.
Such low-rank approximation reduces the complexity
of the tagging space and therefore reduces the quan-
tity of outliers and unnecessary tags.

e Error sparsity. The discrepancy between the raw
tagging matrix and the refined one is hypothetically

‘http://majorminer.org/
Shttp://tagatune.org/Magnatagatune.html
Shttp://labrosa.ee.columbia.edu/millionsong/
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sparse in support (with most entries being zero) be-
cause the original tagging should be accurate to a cer-
tain degree and because a music object is unlikely as-
sociated with a large number of tags. That is to say,
what we want to remove or add to the tagging matrix
should be small in quantity.

Given the raw tagging matrix, it suffices to perform feature
extraction and construct the n by n similarity matrix to
exploit the above three properties for retagging, as the latter
two can be directly inferred from the tagging matrix. While
music tagging can be done either manually or automatically,
the processes of feature extraction and music retagging are
totally automatic, as depicted in Fig. 1.

4. ALGORITHMS

Three algorithms [21, 48, 50] are employed and quantita-
tively compared under the framework of retagging in this
study.

4.1 Label Propagation

Based on the assumption that songs similar in content
often share similar semantic meaning, one straightforward
yet effective approach to music autotagging is to compute
the pairwise similarity between songs based on music con-
tent features and approximate the tagging of a song by its
neighboring ones. For example, the authors in [34] used a
weighted vote from the k-nearest neighbors (most similar)
of a song to determine the tagging of that song.

Many label propagation algorithms have been proposed in
the literature [7]. In this work we adopt the graph-based la-
bel propagation algorithm proposed in [48] for its simplicity
and well-known effectiveness. This algorithm can be con-
sidered as an iterative process where adjacent nodes (songs)
exchange information (tagging) in proportion to the weight
(similarity) of the interlinking edge. During each iteration
each node receives the information from its neighbors and
also retains some of its initial information. When converged
the tagging of adjacent songs would be smooth with respect
to the intrinsic structure collectively revealed by well-tagged
and poorly-tagged songs.

Given the original tagging matrix Y, the result of label
propagation Y* can be computed by [48],

Y= (- ) -as)"'Y, (1)

where S = D™'2W D~1/2 is the Laplacian matrix computed
from the affinity matrix W on the dataset, W;; is a measure
of the similarity between song ¢ and j with W;; being zero
to avoid self-reinforcement, and D is a diagonal matrix with
Dii = 2, Wij [48]. a € [0,1] is a parameter controlling
the propagation rate, or the relative amount of the informa-
tion from neighbors and one’s initial information.

A great many approaches have been proposed for mea-
suring music similarity W, e.g., [4,25,31]. In this work we
utilize a novel similarity measurement working on high-level
semantic descriptors (genres, musical culture, moods, instru-
mentation, rhythm and tempo) inferred by support vector
machines from low-level timbral, temporal, and tonal audio
features [4]. Specifically, classification results form a high-
level semantic descriptor space, which contains the proba-
bility estimates for each class of each classifier, and each
track can be represented as a point in this semantic space.
We compute music similarity by means of weighted Pearson
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correlation between tracks. In our previous work we have
found that with this measurement we are able to achieve
state-of-art performance for a variety of music information
retrieval tasks. We refer the interested reader to [4] for de-
tails on the employed distance measure.

4.2 Robust Principal Component Analysis

Another common general scheme in approximating a noisy
target matrix Y is to select a matrix A that minimizes some
combination of the complezity of A and the discrepancy Y —
A. The most common notion of complexity of a matrix
is its rank (as in classical principal component analysis or
latent semantic analysis) [10,36], or the maximum number
of linearly independent column vectors of A. For example,
it has been well-known that by omitting all but the r largest
singular values of the singular value decomposition (SVD) of
Y, one obtains a low-rank representation of Y with minimal
entrywise discrepancy [12],

Y, = U2, V,) = argmin ||V — A|7, (2)

A, rank(A)<r

where X, = diag(o1,...,0r) consists of the r-largest singu-
lar values of Y (the eigenvalues of YY), U is an nxr matrix
whose columns are orthogonal, V' is an m X r matrix which
is also orthogonal, and ||E||r = /Tr(EET) = 32, (Ei;)* is
the Frobenius norm.

Nevertheless, in real-world problems such as matrix com-
pletion [5,30], one often needs to recover a low-rank matrix
from a corrupted one with gross (i.e., with arbitrary large
magnitude) but sparse (i.e., most entries being zero) errors
FE. This is also the case of music retagging because mu-
sic tags are by nature sparse and because human tagging is
usually accurate to a certain extent only due to multi-way
negotiation. In particular, it has been found that using trace
norm as a surrogate to measure the complexity of A and [1-
norm to measure the sparsity of E leads to the following
convex optimization problem that can be solved efficiently,

e min A+ B, 3)
where || - ||« represents the trace (nuclear) norm of a matrix
(the sum of its singular values), || - ||1 is the {1 norm that
denotes the sum of the absolute values of matrix entries, and
A is a positive weighting parameter. The above problem has
been dubbed robust principal component analysis (RPCA)
as its solution is robust to gross errors or outliers [6].

Efficient algorithms such as accelerated proximal gradient
(APG) [21] and augmented Lagrange multipliers [49] have
been proposed to compute A and F in an iterative fashion.
In this work we adopt the APG algorithm as it can be easily
extended to incorporate the content consistency constraint,
which will be detailed below.

4.3 Robust Principal Component Analysiswith
Content Consistency Constraint

According to the theory of graph embedding [45,51], the
content consistency among the tracks can be enforced by
solving the following optimization problem,

min 37 [|A; = 4| Wey, @)
ij

which is equivalent to minimizing the trace of APAT, where
P =D — W. By adding this regularizer to the formulation
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of RPCA, one obtains the following optimization problem,

. o T
e i (A ) = [[All+ M| Ell A2 T(APAT), (5)
which reduces to RPCA when X2 is set to 0. Instead of
directly solving Eq. 5, it is computational expedient to relax
the equality constraint Y = A + E and solve,

. 1 2
min pg(4, E) + 5[|[A+ E - Y| (6)

As the relaxation parameter p approaches 04, any solution
to Eq. 6 approaches the solution set of Eq. 5.

The APG algorithm proposed in [21] decomposes the above
problem and optimizes for A and F in turn by taking advan-
tage of the following propositions in trace norm minimiza-
tion and {1 norm minimization [5],

. 1

Us.(x)v” =argmin e[| X][. + 5[1X - G|,
. 1

Se(G) =argmin ef|X[1 + Z[[X — Gl|7,

where USVT is the SVD of some matrix G, € is a positive
parameter, and Sc(z) = sgn(z)max(|z| — €,0) is the soft-
thresholding or the shrinkage operator [6]. The relationship
between Eqgs. 6 and 7 can be developed by using G; = Z; —
L'V f(Z,), where Z; is a quadratic approximation of X; =
(AT BT F(X0) = phaTr(A PAT) + 3| Ay + By~ |3, and
L is a constant with which V f(+) is Lipschitz continuous, or
[[Vf(X1) = Vf(X2)|| < Ly||X1 — X2||. In particular, the
optimal A; and E; in each iteration ¢ (with a monotonically
decreasing p¢) can be computed by,

Avr1 = USu (E)V' = SVDw (Ze — L'V af(Zh)),
Btr1= S (Ze = L™'Vif(Z)),

2
where Z, = X, + bt;}f‘l(xt — X)), by = L”;H L=
4puX202.(P) + 6, and omax(-) represents the maximum
singular value of a matrix. The above algorithm has a con-
vergence rate of O(t™2?) [29]. Tt can be further sped up by
computing a partial SVD, instead of the full SVD, using
packages such as PROPACK [17], due to the soft-thresholding
of the singular values. Readers are referred to [6,21,50] for

more theoretical and algorithmic details of APG.

Note that all the algorithms described above produce a
refined tagging matrix A which is real-valued. Because we
do not impose any constraint on the value of A, some entries
of A may be negative when RPCA is used. As these nega-
tive entries tend to be sparse and of small magnitude, one
may simply neglect them and consider A;; as a confidence
measure of tag association.

5. EXPERIMENTS

Instead of directly dealing with large-scale social tags, as
a preliminary study we have decided to experiment on two
popular auto-tagging datasets, CAL500 [41] and CAL10k
[38]" for rapid evaluation. For CAL500 we would consider
synthetic noises and evaluate in terms of the accuracy of tag-
based music retrieval; for CAL10k we would apply retagging
on the original tagging matrix and evaluate in terms of the
accuracy of auto-tagging.

"http://cosmal.ucsd.edu/cal/projects/AnnRet/
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Note that the presented evaluation is only considered as
preliminary. The next step is to extend the corpus to large-
scale social tags, whose characteristics may be different from
either CAL500 or CAL10k. To evaluate retagging on social
tags one needs assured ground truth that is validated by hu-
man annotators [50], which is particularly difficult to obtain
for music [19]. This issue would be addressed in our future
work by evaluating how the refined social tags lead to better
tag-based MIR applications [20] such as style classification
or music recommendation.

5.1 Evaluation on CAL500

We first evaluate the robustness of retagging against three
different types of synthetic noises on CAL500, or the Com-
puter Audition Lab 500, which is made of 502 songs by 502
different artists. Each song is annotated by at least 3 listen-
ers using a vocabulary of 135 tags. A song is labeled with a
tag if there is at least 80% agreement between all listeners.
According to [27], we consider the tags with more than 30
examples and this reduces the vocabulary to 97 tags, includ-
ing 11 genres, 14 instruments, 25 acoustic qualities, 6 vocal
characteristics, 35 emotions and 6 usages. On average each
song is annotated with 23.645 tags.

The following three types of noises are considered to sim-
ulate different types of errors in social tagging:

e Random deletion (RD): a tag is randomly deleted with
a probability £&. RD is used to simulate the weak la-
beling property of social tagging.

e Random insertion (RI): a tag is randomly added with a
probability £&. RI is used to simulate the inaccuracy of
social tagging. Note that we have assumed a uniform
distribution of tag noise in this work for simplicity. For
future work we intend to take into account the correla-
tion between tags and draw random tags for addition
from a nonuniform distribution, which may better cap-
ture the “real” noises induced by human tagging.

e Random deletion and insertion (RDI): the cascade of
RD and RI; tags are randomly deleted and then ran-
domly added, both with a probability £. We have in-
terchanged the order of RD and RI and found that it
does not matter.

The higher the noise rate £, the noisier the tagging matrix.
We denote the corrupted tagging matrix as Ye.

As suggested in [18] and [24], in addition to using tradi-
tional accuracy measures such as precision and recall [41] as
evaluation criteria of music autotagging, a better alternative
is to measure directly the extent to which an algorithm cap-
tures the sought-after quantity of music autotagging, which
is a set of tags that can sufficiently identify a song, so that it
can be readily cataloged and retrieved by users [18]. There-
fore, we propose to use the following tag-based music re-
trieval scenario to evaluate the performance of retagging:
for each song, rank the other songs in a descending order
of semantic similarity in the tag space. To prevent the re-
sult from being dominated by popular tags, we apply term
frequency-inverse document frequency weighting [31] to the
tags and then compute the Euclidean distance. We then
measure the consistency between the ranking order com-
puted from the raw tagging matrix (which is considered as
clean) and the one computed from the refined (retagged)
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tagging matrix using the Spearman rank correlation coef-
ficient (or Spearman’s p) [46]. Higher correlation indicates
better recovery from the imposed noise. The evaluation pro-
cess is repeated 10 times to get the average results.

We compare the following retagging methods,

e Baseline: do nothing.

e Content similarity (CS): use the graph-based label prop-
agation algorithm described in Section 4.1.

e Low rank (LR): use the robust principal component
analysis algorithm APG described in Section 4.2.

e CS+LR: use APG with content consistency constraint
algorithm described in Section 4.3.

In other words, in the baseline method we directly use the
corrupted matrix Ye to perform tag-based music retrieval
and compare the resulting ranking of songs to that resulted
from using the raw matrix Y. While Y and Y are both
binary matrices, the refined matrix A computed by the three
other algorithms is real-valued. For a fair comparison, we
rank the tags of each track based on their confidence scores
and retain only the top K tags as the ultimate tags. We then
compute the similarity between songs based on the binary
version of A. In this work K is simply set to average number
of tags per song observed in Y, namely 23.6.

A grid-search strategy has been employed to find the op-
timal set of parameters for each method. We find that the
performance of CS is not very sensitive to « and setting it
to 0.5 seems to perform well. For LR and CS+LR we search
for A1 and Ao from {27%,27% ... 2%} and find that setting
M =22and N, =276 empirically performs well. All the
above methods are implemented in Matlab. When executed
on a Windows server with two octo-core AMD CPUs, the
computation time for CS+LR is about 6.26+2.32 seconds.
CS is very efficient as it has a closed-form solution.

From Fig. 2 we see that all retagging methods greatly out-
perform the baseline, except for CS when the noise is RD
(more on this later). We can also observe that LR consis-
tently outperform CS in most cases, and that the combina-
tion of CS+LR further boosts the performance slightly. We
also see that even with rather severe noise and the tagging
matrix being close to full or random, CS+LR is still able
to discover some hidden patterns and recover the matrix to
a certain level without using any additional or external in-
formation other than the content similarity of music pieces.
When ¢ = 0.3, the relative gain in terms of Spearman’s p are
42.1%, 238%, and 122% for RD, RI, and RDI, respectively.

By comparing the results of the baseline method in Figs.
2(a)—(c) we find that the accuracy of tag-based music re-
trieval is more sensitive to random insertion noise than to
random deletion one. This is possibly because, even when
some relevant tags are removed, two songs could still be
claimed similar if they share a critical and specific subset
of tags. On the other hand, if too many irrelevant tags
are added, the tag space would be severely corrupted. We
also observe that the results of the baseline method are very
similar in Figs. 2(b) and (c). This implies that RI exerts
a greater influence than RD on tag-based music retrieval.
Interestingly, a similar observation that “small and clean”
tags performs better than “large but noisy” tags for music
similarity applications has also been made before [16].
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Figure 2: Performance of different retagging methods for tag-based music retrieval under different noise
rates, using CAL500 and a vocabulary of 97 tags [41].

When the noise rate is small (e.g., £=0.01), using CS
would not lead to much refinement and the resulting Spear-
man’s p is close to that of the baseline. With a larger noise
rate, CS outperforms the baseline by a great margin for RI
and RDI. CS even slightly outperforms LR for RDI when
& >0.35. This result shows that the content similarity is in-
deed an important cue in removing irrelevant tags. However,
for RD the performance of CS is even worse than that of the
baseline. We find that the amount of information that can
be propagated by the graph-based label propagation algo-
rithm is highly dependent on the initial information. When
many tags are deleted by RD, for some songs there are less
than K tags that have nonzero confidence scores and un-
der such a circumstance random tags will be added so that
each song is tagged by K tags. These randomly added tags
deteriorate the result of CS for RD.

Fig. 3 shows the tag distributions (number of songs la-
beled with each tag) of the original tagging matrix and some
retagged ones. It can be found that the retagging of RD by
CS is indeed sparse and dominated by a few popular tags.
Many other tags are in fact randomly added in the final
step of retagging. The result of RI by CS is also sparse, but
many of them simply have zero counts since it does not incur
random addition of tags. On the contrary, the CS+LR al-
gorithm is found to be robust against either RD or RI (Figs.
3(d) and (e)), producing a tag distribution that is similar to
the original uncorrupted one.

Among the three types of noises, RDI may be the closest
to the real world case observed in social tagging websites
such as Last.fm. From Fig. 2(c) we see that CS+LR greatly
improves the quality of a tagging matrix that is corrupted
by an RDI noise with < 0.5 error rate. In our evaluation of
tag-based music retrieval, the Spearman rank correlation co-
efficient between the ground truth matrix and the retagged
one is above 0.5 when the error rate is smaller than 0.25.

Generally speaking our evaluation shows that LR is more
effective and robust than CS for the task of retagging. Modi-
fying LR by adding a content consistent constraint (CS+LR)
leads to an even better performance.

5.2 Evaluation on CAL 10k

To evaluate retagging on a larger dataset, we employed
the CAL10k collection [38]. It comprises 10,870 partially
annotated songs by 4,597 artists. Each song is annotated
using a vocabulary of up to 1,053 tags by expert musicol-
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ogists hired by the music service company Pandora.® We
collected the audio files of 7,069 songs in this collection and
extracted their content features. On average each song is
annotated with 11.54+4 tags. Considering the sparsity, the
percentage of nonzero elements in the tagging matrix for
CALI10k is 1.26%, whereas for CAL500 it is 24.4%. Namely,
CALI10k is 19.4 times sparser. However, as opposed to the
CAL500, we do not intend to reduce the sparsity by remov-
ing rare tags because large-scale tagged music collections are
characterized by such sparsity.

Moreover, instead of using synthetic noises we apply re-
tagging directly on the original tagging matrix and evaluate
how the refined matrix leads to better performance for music
auto-tagging. Specifically, we randomly hold out 50% of the
dataset and use the remaining 50% as training data to build
a simple k-nearest neighbors based autotagging model [34].
The precision and recall are measured by comparing origi-
nal tags of the test songs to those predicted by original tags
and improved tags (by retagging) of the training songs. For
each test song, only tags that appear at least Sk times in
its top k neighbors in the training data are proposed, where
B € [0, 1] is a voting threshold that influences the number
of proposed tags. Empirically we find that using § = 0.1
has a good trade-off between precision and recall.

Fig. 4 shows the result as we vary k from 5 to 500 with
an increasing step of 10. It can be observed that the recall
rate is much improved when the tagging matrix has been
retagged by CS+LR. We also see that, after retagging, the
performance of autotagging is less sensitive to the value of
k. Note that in this evaluation recall is more important than
precision as CAL10k suffers from the weak labeling problem
and therefore precision can be underestimated.

The main computational burden of APG is the singular
value decomposition that needs to be performed in each iter-
ation (cf. Eq. 8). The required CPU time for retagging the
training set of CAL10k is 36.845.08 minutes, which is 353
times longer than that for CAL500 (contrastingly the size
of CAL10k is 76.7 times larger than CAL500). Our simu-
lation using Matlab programs shows that for a very large-
scale tagged dataset whose size is 64k by 2.4k, APG requires
around 8 hours to complete retagging. We are currently in-
vestigating other algorithms [30, 33] for better scalability.

®http://www.pandora.com/
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Figure 3: The tag distributions of (a) the original
tagging of CAL500, (b) the retagged one of RD by
CS, (c) the retagging of RI by CS, (d) the retag-
ging of RD by CS+LR, (e) the retagging of RI by
CS+LR. Numbers along the abscissa and the ordi-
nate are the tag indexes and number of songs labeled
with each tag, respectively. All the noise rate is 0.2.

6. CONCLUSIONS

In this paper we have introduced a novel music retagging
framework for improving the performance of tag-based mu-
sic information retrieval systems. We have also presented
an empirical study that demonstrates the effectiveness of a
number of music retagging algorithms. Our result shows
that robust principal component analysis with content con-
sistency constraint achieves the best performance and all
the evaluated retagging algorithms improve the robustness
of a tag-based system against erroneous assignment of music
tags. Music retagging also improves the quality of expert-
assigned tags and greatly increases the recall of a simple mu-
sic auto-tagging algorithm. Experiments over larger-scale
social tags is underway.
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