WWW 2012 - Industrial Track

April 16-20, 2012, Lyon, France

Towards Expressive Exploratory Search Over
Entity-Relationship Data

Sivan Yogev
IBM Research Haifa, Israel
and
Department of Computer Science
Ben-Gurion University of the Negev, Israel
sivany @il.ibm.com

ABSTRACT

In this paper we describe a novel approach for exploratory
search over rich entity-relationship data that utilizes a unique
combination of expressive, yet intuitive, query language,
faceted search, and graph navigation. We describe an ex-
tended faceted search solution which allows to index, search,
and browse rich entity-relationship data. We report experi-
mental results of an evaluation study, using a benchmark of
several of entity-relationship datasets, demonstrating that
our exploratory approach is both effective and efficient com-
pared to other existing approaches.

Categories and Subject Descriptors: H.3.3 [Information Search

and Retrieval]: Search process; Query formulation; Retrieval mod-
els

General Terms: Algorithms, Experimentation

Keywords: Entity-relationship data, Exploratory search

1. INTRODUCTION

Data complexity and its diversity have been rapidly ex-
panding over the last years, spanning from large amounts of
unstructured and semi-structured data to semantically rich
available knowledge. Increasing demands for sophisticated
discovery capabilities over rich entity-relationship (ER) data
are now being imposed by numerous applications in various
domains such as social-media, healthcare, telecommunica-
tion, e-commerce and web analytics, business intelligence,
and cyber-security.

Many useful facts about entities (e.g. people, locations,
organizations, products) and their relationships can be found
in multitude semi-structured and structured data sources
such as Wikipedia (http://wikipedia.org), Linked Data cloud
(http://linkeddata.org), Freebase (http://freebase.com), and
many others. Yet, many of these facts are hidden behind
barriers of language constraints, data heterogeneity, ambi-
guity, and the lack of proper query interfaces. Therefore,
novel discovery methods are required to provide highly ex-
pressive discovery capabilities over large amounts of entity-
relationship data, which are yet intuitive for end-users.

ER discovery approaches can be classified according to two
main user-centric aspects, namely the type of queries they
support (termed query type hereinafter) and the amount of

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2012 Companion, April 16-20, 2012, Lyon, France.

ACM 978-1-4503-1230-1/12/04.

83

Haggai Roitman, David Carmel, Namma
Zwerdling
IBM Research Haitfa, Israel
{haggai,carmel,naamaz}@il.ibm.com

user involvement in the discovery process (termed query ez-
ecution hereinafter).

Query types range from free-text queries to fully struc-
tured queries. Free-text queries allow end-users a simple way
to express their information needs independently from the
underlying data model and structure, as well as from a spe-
cific query language. On the other hand, structured query
languages such as SQL for relational data, XQuery for XML,
and SPARQL for RDF data, allow users to submit queries
that may precisely identify their information needs, but of-
ten require users to be familiar with formal logic represen-
tation and with the underlying ontology and data structure.

Query execution ranges from one-shot queries to iterative
queries. A one-shot query is executed once by the system
without supporting additional user involvement. Therefore,
the search system is solely responsible for satisfying the
user’s information needs. Inspired by interactive informa-
tion retrieval [27], where end-users can interactively refine
their queries whenever their initial information need is not
satisfied, iteration-supporting systems allow a sequence of
query refinements through user involvement during the iter-
ative querying process.

We present a novel exploratory approach over ER data
which combines the advantages of existing discovery ap-
proaches along the two aspects. Our approach is based on a
combination of an ezpressive query language, faceted search,
and ER graph navigation. Users can express their initial
information need using a wide range of queries, spanning
from simple free-text queries to more structured constraints
over entity properties and their relationships with other en-
tities. This allows utilization of a single search system to
query entities and their relationships by both expert users
and end-users who are neither familiar with the query lan-
guage nor the data model.

We describe an extended faceted search solution for index-
ing and searching entity-relationship data. Our implemen-
tation generalizes the dual entity data representation pre-
viously proposed by Amitay et al. in the context of social
search [2]. Each entity is dually represented as a searchable
document and as a category of all other entities it relates
to. Thus, the categories of retrieved entities enable brows-
ing over the ER graph.

However, this dual representation supports only binary
relationships. For example, a bookmark relationship in a
social bookmarking system captures three entities involved
in any bookmarking event: the tagged document, the tagger,

WWW 2012 - Industrial Track

and the tag. Such relationships are usually expressed using
three different binary relationships [18]. In this paper we
present a generalized solution which enables to capture ar-
bitrary n-ary relationships by representing each relationship
instance in the system as a category set that contains the
categories of all participating entities. This representation is
required when searching for specific relationship instances,
for example, the collection of tags used by a specific person
to bookmark a specific document — a set that cannot be iden-
tified by binary relations only. In Section 4 we expand on
the implementation details of our system, and demonstrate
how various rich entity-relationship data can be indexed and
searched.

The output of the search system is a ranked list of en-
tities that match the user query. Similarly to traditional
faceted search systems, the system provides a distribution
of retrieved entities over the facets they belong to, including
facets of various entity types, properties, and related enti-
ties. The user in turn can exploit such facets to focus the
search on a specific entity type or attribute, or to explore
another direction by navigating to another related entity in
the ER graph.

Whenever the user chooses to either filter the current re-
sult set based on some facet or to follow related entities
using a relationship facet, the user query is automatically re-
fined to reflect her choice using structured query predicates,
while releasing the user from the need of understanding the
underlying query language. On each iterative query step,
similarly to traditional faceted search systems, the system
provides the user with a useful report on facet distributions,
revealing the number of sub-results expected for each facet
choice.

Figure 1 demonstrates a discovery usage in our system for
the social-medical domain [26] which is integrated within
the IBM Patient Empowerment System®. In this example,
two patients are returned as relevant to the initial query
“Hemophilia” submitted by a user, who later on followed
the “Related patients” link to discover related patients to
the query. The system exposes several facets as well as other
entities related to those patients. For each patient the user
may further restrict the search to a specific facet, or follow
relationship links to explore other related entities.

The main contributions of this paper can be summarized
as follows.

e We describe a novel interactive querying approach over
rich entity-relationship data which provides a unique combi-
nation of an expressive, yet intuitive, query language, faceted
search, and ER graph navigation.

e We provide detailed description of a system which im-
plements the aforementioned approach.

e Using experimental evaluation over several benchmarks
of ER data, we demonstrate that our solution is both effec-
tive and efficient compared to other existing approaches.

2. RELATED DISCOVERY APPROACHES

Existing ER discovery approaches can be classified accord-
ing to the query type and the query exrecution dimensions
mentioned in Section 1. Next we discuss these classes in
more details.

IBM Patient Empowerment System social-medical dis-
covery demo is available at http://www.youtube.com/
watch?v=YFRjOB39hvA

84

April 16-20, 2012, Lyon, France

One-shot free-text queries include simple keyword
search services, and more recently, systems that allow users
to submit keyword queries over structured data such as re-
lational data [19, 1, 13], XML data [16], and RDF [23, 33].
Such approaches have become popular means for data dis-
covery due to their simplicity and intuitiveness to end-users.
However, interpreting user information needs expressed in
free-text queries is usually not an easy task, especially due
to the wocabulary mismatch between the user query and
the data. In some cases, especially when structured data
is queried, additional result analysis for the user query is
needed (e.g., entity extraction), in order to correctly inter-
pret user needs and translate them into the underlying data
model.

One-shot structured queries eliminate some of the
drawbacks of free-text queries by providing expressive means
for query languages, e.g., SPARQL for RDF data [28]. Yet,
such languages still have several limitations. First, users
must be familiar with the query language syntax. Second,
users may need to be familiar with the underlying data
model and its semantics. The second limitation may be
relaxed by using logical views over queried data [17]. How-
ever, such relaxation usually adds additional complexities
to query execution such as the need for data mappings [17].
Therefore, systems that provide structured query interfaces
have not been so far willingly adopted by end-users, but
rather been mostly used by domain experts.

Interactive free-text queries allow users to simplify
the way they express their information needs by using a seed
query that can be refined by a set of subsequent query formu-
lations, driven by user’s goals and decisions. The main ob-
jective of such systems is to minimize the number of queries
needed for answering the user needs.

Two popular approaches for interactive free-text queries
exist, namely query suggestion [5, 8] and faceted search [30].
Search systems with query suggestion capabilities offer re-
finements to the user query [8], or provide keyword auto-
completion services which help users to better express their
information need, usually by utilizing queries previously sub-
mitted by other users [5]. Faceted search systems associate
multiple classifications with queried entities (e.g., categories
attached to text documents) which can be used later on
for query refinement using a convenient faceted navigational
scheme. Given the initial user query, faceted search systems
retrieve both the set of relevant documents and a set of facets
associated with the number of relevant documents per each
facet value. Then, the user can refine the query by filtering
the original result set based on one or more facets (“drilling-
down”).

Nowadays interactive free-text search is widely adopted
by many discovery systems in various domains such as web
search (e.g., Google Suggest), E-Commerce (e.g., eBay, Ama-
zon, Shopping.com), (e.g., [2]), medical discovery systems
[26], and many more.

Interactive structured queries follow the success of
interactive free-text query systems. Several such systems
have been proposed and provide either query suggestion [15]
or faceted search interfaces [6]. Yet, similarly to one-shot
structured query approaches, such systems are less popular
than their interactive free-text query counterparts, due to
the same reasons given for the one-shot case.

Recently, few works have identified the gap between the
intuitiveness of interactive free-text queries and the usability

WWW 2012 - Industrial Track

April 16-20, 2012, Lyon, France

) . : .

‘@ Social Medical Discovery
Search iQ Hemophila

AHemophilia

> Name : Hemophilia
b Category :Bleeding disorders

Results Navigation : Problem >> Hemophilia , Related patients >>

B [sAge
Result 1-2 out of 2 Total: 1 ©45(1)
+47(1)
~ = Country
Adan Jenkins <Usa(2)
= [7Gender
[3} ts (5 ~ Male(2,
b Middle name : Paul fem [Documentsi(5) @Male(2)
o GEET VSIS - | Traditional drugs (4)
b Age : 47- | Social habits (3)
& Address : Biscayne boulevard Miami 482 Usa 5] Foods (2)
> Phone number : 785-995874 & Family members (6)
© Cell number : 267-152643 =] Vital signs (4)
© E-Mail : JenkinsAdan®@gmail.com &) Familiar service providers (1) =
show more patients like this >>
v

Ignacio Williams

=» Related patients (2)
& Expert physicians (4)
& Related articles (6)

§ &3 More option

A Filter by :

= [_~Social attributes

B (- City
@ Miami(2)
B [sStreet

«Biscayne
boulevard(2)

Figure 1: Social Medical Discovery — a search application in the healthcare domain that is based on our
discovery system. Users can initiate an exploratory session by submitting a (free-text or structured) query
and then follow a specific attribute of retrieved entities (shown in the Filter by: column) or one of their
related entities (given within the patient’s record). For privacy reasons all patient details are fake.

of interactive structured queries and proposed the concept
of incremental querying [32] as a compromise. In an incre-
mental querying setting, the user may start her search using
simple keyword search. The search system then suggests
the user a set of candidate structured queries, aiming at
correctly translating the user needs. Then, the users can se-
lect appropriate structured query to be executed according
to their needs.

ER discovery over unstructured data has recently
attracted the attention of many researchers from a classi-
cal IR perspective. This extension follows the observation
that for many user queries, entities are more suitable for
query satisfaction than full documents such as web-pages
or scientific papers. The INEX entity ranking track [14]
studied entity ranking over Wikipedia articles where enti-
ties are assumed to correspond to Wikipedia entries. Exam-
ple queries include “Italian Nobel prize winners”, “Formula
1 drivers that won the Monaco Grand Prix”, or “German
spoken Swiss cantons”. The TREC entity track [4] studied
the related entity finding task over the ClueWeb collection,
where the query specifies a source entity (usually the entity
home-page), the type of target entities that should be re-
trieved, and the relationship type to consider. An example
query for this task asks for teammates of “Michael Schu-
macher” when he was racing in Formula 1, with possible
relevant answers being “Eddie Irvine” and “Felipe Massa”
[3]. Popular approaches for handling such queries retrieve
and rank entities that are mentioned or linked by relevant
documents, as identified by traditional retrieval methods [4].
Several systems have been developed recently that extract
entities and their inter-relationships from an unstructured
or semi-structured collection of textual documents, provid-
ing an effective ER representation scheme using RDF and
efficient SPARQL based entity search services [21, 31].

85

Proximity search: Entities and their inter-relationships,
whether identified within a text corpora by named entities
extraction tools, or provided explicitly, can be represented
by Entity Relationship Graph (ERG). A graph node rep-
resents a unique entity in the system and an edge between
two nodes specifies an existing relationship between the two.
Measuring the proximity between entities, i.e., their rela-
tionship strength, or ranking entities according to their prox-
imity to a given entity, are both fundamental retrieval tasks
that were studied extensively, e.g., [20, 9, 22, 11]. Most
solutions apply variants of a random walk over the graph.
One weakness of the ERG model is the lack of a plain repre-
sentation for non-binary entity relationships in the ER data
model. Additionally, random walk computation is based on
the entire graph hence it is very sensitive to any graph up-
date.

Our Approach: In the context of related work, our ex-
ploratory system belongs to the class of interactive struc-
tured queries, as it supports facet search together with graph
navigation. In addition, it provides a flexible query language
that follows the incremental querying paradigm, spanning
from free-text to structured queries. During the exploratory
session, our system discloses only entities and relationships
that are likely to be relevant to the user, according to pre-
vious queries, thus enabling effective data exploration.

3. MODEL

In this section we present the model building blocks of
our entity-relationship search system. We first describe our
entity-relationship model. We then describe our query model
and show several example queries. We conclude this section
with a description of our interactive query model.

WWW 2012 - Industrial Track

label taxonomy)

Tag

name

id e title

Manager|
Management
Employed

s

content

Tagger
Bookmark

Person Document

Author

timestamp

owns

timestamp
(timestamp)

Figure 2: Example ER Model: Social Search

3.1 Entity-Relationship model

Our model is based on a simplified version of the concep-
tual entity-relationship model [10]. In this model, an entity
e is defined as any object or “thing” that can be uniquely
identified and distinguished from other entities. Each entity
has a type e.type used for its classification®>. Each entity
has a set of one to many attributes e.a used to describe the
entity’s properties. Each attribute a has a name a.name, a
type a.type (e.g., String, Integer, Date) and a value a.val.
An entity’s key e.key is further defined over its attributes,
consisting of some minimal attribute subset that can be used
to uniquely identify the entity. Each entity must have at
least one key.

A relationship r captures an association between two or
more entities, termed relationship members. Each relation-
ship has a type r.type and is uniquely identified by the com-
bination of its entity member keys, denoted r.key. Each
relationship entity member r.e may have a role r.e.role that
captures the role this entity “plays” in the association. A
relationship may further have zero to many attributes r.a,
which can be used to describe its context.

3.1.1 Example: Social-search ER model

Figure 2 illustrates an example entity-relationship model
related to the domain of social-search that we shall use to
illustrate our main concepts. In this model, there are three
main entity types, Person, Document, and Tag. Each entity
has attributes that describe it and a key. For example, a per-
son has an id (String) that further serves as its key, a name
(String), and an age (Integer) attributes. Persons can own
documents while their authorship role is further kept. Per-
sons may bookmark documents with tags, and bookmarks
are captured in the model by a ternary relationship Book-
mark that connects the three entity types. For a person
we further keep his tagger role. Each person may have
friends captured by the Friendship relationship. Finally,
the Management relationship captures management associa-
tions among persons, where for each person we keep either
her manager or employee role.

3.2 Query model

A query over ER data can be used to discover entities

2Multiple types can further encode inheritance hierarchies.

86

April 16-20, 2012, Lyon, France

based on patterns of interest, either by directly querying
entities, their relationships, or both. A query result is a list
of entities, possibly of various types, ranked according to
their “relevance” to the query.

Formally, a query g is a collection of one to many pred-
icates. Each predicate describes some entity pattern, and
the result of each predicate is expected to be a set of enti-
ties that “match” the specified pattern. Different predicates
can be combined using the AND, OR, and NOT logical oper-
ators to construct a more complex query predicate. Com-
plex predicates may be bounded with parentheses to denote
their scope. Three types of query predicates are supported,
namely, entity attribute predicates, free-text predicates, and
entity relationship predicates. We now shortly explain each
predicate type, accompanied with few examples.

3.2.1 Entity attribute predicates

An entity attribute predicate allows to query entities based
on their type and attributes. The basic form of such predi-
cate is:

entityType.attributeName:attributeValue

entityType defines a specific entity type or * for all pos-
sible types; attributeName defines a specific attribute name
or * for all possible names; attributeValue defines a pat-
tern of the attribute values of interest or * for all possible
values. attributeValue can define either a specific value, or
a range of possible values denoted as [lowerBound TO up-
perBound], specifying a lower bound and upper bound (each
bound can also be *).

The followings are several examples for entity attribute
queries.

EXAMPLE QUERY 1. The query predicate Person. *: * (al-
ternatively Person.* or Person.) can be used to return all
person entities.

A specific person entity may be further returned by using
that entity’s key; e.g., the query Person.key:12345 will re-
turn a single person entity identified by the specified person
key.

EXAMPLE QUERY 2. Return all person entities whose name
is “John” and age is between 20 to 40:

Person.name: "John" AND Person.age:[20 TO 40]

3.2.2 Free-text predicates

As already mentioned, issuing structured queries such as
the aforementioned entity attribute queries requires some
level of knowledge regarding structure. However, such knowl-
edge is usually attained only by system experts, while the
majority of users cannot translate the information need into
structured queries. Free-text query predicates treat entities
as text documents and therefore query the entities’ content
regardless of their structure. A free-text query predicate
may include keywords, phrases, prefixes (e.g., ne*), etc. As
an example, the query predicate "CNN News" (or *.*:"CNN
News") can be used to return entities that contain this phrase
in at least one of their attribute values. The following exam-
ple demonstrates how results can be restricted to a specific
entity type.

3We mostly focus in this work on retrieving entities that
match the query. For some types of queries entities are
ranked based on textual similarity to the query.

WWW 2012 - Industrial Track

EXAMPLE QUERY 3. Return document entities related to
"CNN News”:

Document. AND "CNN News"

3.2.3 Relationship predicates

A relationship query predicate can be used to retrieve en-
tities based on relationships they participate in. For that, a
relationship predicate allows to define the entity relationship
participation pattern, including the type of relationship, its
relationship member patterns and their roles, and relation-
ship attributes that limit the search according to some con-
text. The result of a relationship query predicate is a set
of entities that participate in the relationship subject to the
relationship specified pattern.

More formally, a relationship predicate is defined by the
following expression:

relType ((WITH *) | (withExp (AND withExp)™))

relType specifies a specific relationship type or * if any
type should be considered. withExp further denotes an ex-
pression that takes the form:

WITH (relMemPred | relAttPred)

WITH is a special operator used to describe a single rela-
tionship entity member pattern (relMemPred) or relation-
ship attribute (relAttPred) pattern. relMemPred may in-
clude any combination of free-text or entity attribute pred-
icates.

The following two queries demonstrate the usage of the
WITH expression within a relationship predicate, once based
on some relationship attribute, and once based on some re-
lationship member pattern.

EXAMPLE QUERY 4. Return entities that participate in
some Bookmark relationship with timestamp starting from
1/1/2011:

Bookmark WITH timestamp:[1/1/2011 TO *]

EXAMPLE QUERY 5. Return entities that participate in
some Bookmark relationship, where one of the relationship
entity members is a tag that contains the keyword “news” as

its label.
Bookmark WITH Tag.label:news

It is worth noting that the result of the above query in-
cludes entities that are either tags that contain the keyword
“news”, persons that used such tags, and documents that
were bookmarked with such tags. In order to further con-
strain the query result to a specific entity type, the above
relationship predicate should be used in conjunction with a
predicate that states the entity type of interest. For exam-
ple, the following query extension obtains only documents:

EXAMPLE QUERY 6.

Document. AND (Bookmark WITH Tag.label:news)

Several WITH expressions can be combined together in the
query to bind several relationship members and attributes,
to form a complex relationship participation pattern.

EXAMPLE QUERY 7. Return entities associated with book-
marks that contain the tag “news” with documents that con-
tain the expression “breaking news”:

Bookmark WITH Tag.label:news
AND WITH Document.content:"breaking news"

87

April 16-20, 2012, Lyon, France

Relationship members may be further constrained to a
specific role in the relationship by using the AS clause.

EXAMPLE QUERY 8. Return person entities whose age is
25 or bellow and act as managers:

Person.age: [* TO 25] AND

(Management WITH *) AND Person. AS manager

3.3 Interactive Querying

The rich query model described above is mostly useful for
expert users, not for novices. For a user who is not familiar
with the query language or the data model, an interactive
approach is preferred, where the information need of the
user may be gradually covered by a series of query refor-
mulations, starting from the user’s original query, based on
user selections.

More formally, an interactive query session is a final se-
quence of query reformulations qo, q1, ..., gk, where qo is the
initial query submitted by the user, g is the final query, and
q;i = p(qi—1, Ri—1,8i—1) for each 1 < i < k. ¢ is a reformu-
lation function, R;_1 is the set of entity results obtained by
issuing ¢;—1, and s;_1 represents the user’s selection follow-
ing the results from step 7 — 1.

Our system supports two types of reformulation functions.
The first type is query based reformulation, where the new
query contains the previous query as a predicate. These re-
formulations are enabled using an extended faceted-search
approach. In the ER model context, possible facets of inter-
est are entity types, relationship types, and attribute names
and values. The user selection of a category in the faceted
search results adds a constraint to the previous query.

As an illustrative example, lets consider again Query 6.
The information need expressed by this query could be equiv-
alently achieved using the following interactive query session
having 4 steps:

Qo "news"

sop = entityType : Tag //focus on tags only

q1 = #(qo, Ro, s0) = Tag.*:news

s1 = attributeName : label //focus on the tag’s label attr.

q2 = ¢(q1, R1,s1) = Tag.label:news

so = relType : Bookmark //focus on Bookmark rel.

g3 = ¢(q2, R2, s2) = Bookmark WITH Tag.label:news

s3 = entityType : Document //focus on documents only

g4 = (g3, R3,s3) = Document. AND (Bookmark WITH
Tag.label :news)

While the previous example results in a conjunctive query,
disjunctive queries can be also generated by further allowing
users to have multiple facet selections.

The second reformulation type is entity based reformula-
tion, where the user selects a single entity in the result set
as a new query. Consider, for example, the following refor-
mulation trail for discovering the manager of “John Doe™:

qo = "John Doe"

Ry contains Person entity e, with name “John Doe”

S0 = €m,relType : Management

q1 = ¢(qo, Ro, so) = Management WITH Person.key:12345

s1 = relationshipRole : manager

g2 = ¢(q1, R1, s1) = (Management WITH Person.key:12345)
AND Person. AS manager

3.4 Discussion

While a wide range of information needs can be answered
using the proposed interactive query language, there are still

WWW 2012 - Industrial Track

many queries which cannot be answered. In terms of query
expressiveness on ER graphs, our query language supports
arbitrary SPARQL-like star-queries; yet, multi-chain-queries
cannot be easily answered [33]. Queries such as: “return doc-
uments that were bookmarked by two friends”, which impose
constraints on the relationship between result entities, are
not supported directly by our query language and require
additional efforts. We leave these extensions for future work.

4. IMPLEMENTATION

In this section we describe the implementation details of
our ER search system. We first define a logical document
model, and show how entity-relationship data is translated
into this model. We then describe how the different query
types presented in Section 3.2 can be evaluated using this
implementation.

4.1 Logical document model

We hereby describe a logical document model used in
the next section for representing entity-relationship data.
Our logical document model consists of four main building
blocks, namely, Documents, Fields, Categories, and Category
sets. Each entity in the model is represented by a document
while its attributes are represented by the document’s fields.
In addition, each entity is represented as a category, and a
relationship is represented by a category set that contains
all categories of participating entities. This dual representa-
tion allows efficient search for entities, either through their
attributes as well as through their relationships with other
entities, as we will show in the following.

Formally, a document d is defined by a quartet (id, Fy,
Cq,CSyq); id is a unique document identifier; Fy is a col-
lection of fields — each field f € Fy is defined by a triplet
(name, value, payload). Cq is a set of categories used to
categorize the document. Each category ¢ € Cy is defined
by a path consisting a sequence of nodes ¢ = vi/v2/ ... /u
in the system taxonomy 7. Finally, C'S; is a collection of
category-sets, where each category-set cs € C'Sy is defined
by a set of pairs cs = {(¢,payload) | ¢ € T}. The pay-
load of a field or a category in a category-set, which is used
to represent additional related information, is optional and
not always required. In such cases we exclude it from the
object’s description.

4.2 ER data representation

We now describe how entity-relationship data is repre-
sented in the logical document model. To illustrate this
representation, an example of a Bookmark relationship in-
stance with its entity members is given in Figure 3, together
with a detailed example of the document constructed for the
Person entity.

4.2.1 Entities

An entity e is represented by a document d., with Fe
containing the following fields: 1) firey = (key, e.key) for the
entity’s key; 2) fiype = (type, e.type) for the entity’s type; 3)
fa = (e.type|a.name, a.value, a.type), for each of the entity’s
attributes e.a; 4) fo.name = (attribute,a.name), for each
of the entity’s attributes. The last fields are required for
supporting an efficient retrieval of all entities having these
attribute names (e.g., *.age:*).

Additionally, to efficiently support free-text queries, a spe-
cial field feontent = (content, text), is added to d.. The text

88

April 16-20, 2012, Lyon, France

(" labelnews) (taxonomy:myTags

Tag

fitle:CNN News)

(" name:Alice

1d:123 \\

Person

age:ds) /" content:Breaking

url:http://enn.com)
News...

Bookmark Document

~ timestamp:
. 10/21/2010

(a)

doc-id | 1
Fe Trey = (key, 123)
ftype = (type, Person)

a; = (Person|id, "123",String)
fay = (Person|name, "Alice",String)
faz = (Personlage, 45, Integer)
faq.name = (attribute, id)

= (attribute, name)
fa3,na7ne = (att"'ibU‘tea age)
feontent = (content, "Alice. 45")
fee = (entity, key,entity/Person/123)
c1=entity/Person/123
co=Integer/age/45
cz=relationship/Bookmark
cqg=Date/timestamp/2010.10.21
cs1 = {(c1,tagger), entity/Document/cnn.com,
entity/Tag/news, c3, Ca}

(b)

fag.name

CSe

Figure 3: a) A Bookmark relationship with corre-
sponding entities, and b) a logical document repre-
senting the Person entity.

value of this field is the concatenation of all attribute values
represented as string literals. Some attributes may contain
data which is irrelevant for free text search (e.g. the entity
id). Therefore, the model allows defining for each attribute
whether its string representation should be available for free-
text search, and the text value of feontent concatenates only
those attributes’ values. In Figure 3, the searchable content
contains the person’s name and age, and not the person’s
id.

As mentioned above, each entity e is represented as a cate-
gory in the system taxonomy, with c. = entity/e.type/e.key
as its path. In order to provide a mapping from d. (the docu-
ment representation of e) to c. (its category representation),
a special field f., = (entity, key, c.) is added to F..

C. includes categories which allow later on to perform
faceted-search based on the entity type and attributes. Sim-
ilarly to searchable attributes, one can decide which at-
tributes worth also exposing as facets, representing attribute
a as ¢, = a.type/a.name/a.value. In Figure 3, the entity
type and the person’s age are further kept as categories.

4.2.2 Relationships

A relationship r is represented as a category-set cs, that
includes the categories of all relationship members. More
specifically, for each relationship entity member r.e with
role r.e.role, the pair (cr.e,r.e.role) is added to cs,. The

WWW 2012 - Industrial Track

category cr.iype = relationship/r.type is also added to csr,
to represent the relationship type r.type. As relationships
can contain attributes, each relationship attribute r.a is rep-
resented by a category ¢r.. = r.a.type/r.a.name/r.a.value,
which is added to c¢s,. In order to record relationship r for
each of its entity members r.e, we add cs, to CS..

As already mentioned, C. includes all categories required
for supporting faceted navigation, either through the re-
lationship type, related entities, or relationship attributes.
Therefore, in Figure 3, the categories of the relationship type
and the bookmark timestamp attribute are further added to
Ce.

4.3 Query Processing

In this section we describe the runtime process of each of
the query types presented in Section 3.2. Recall that since
an entity e has two representations (de and c.), the set of
entities which comply with a query can be generated either
as a list of documents or as a list of categories. The transi-
tion from one representation to the other can be efficiently
performed using fc, and frey.

Most of the query processing described next is done using
Lucene’s Term Query, which accepts a term containing field
name and a query term, and efficiently retrieves all docu-
ments in which this term appears in the context of the given
field.

4.3.1 Free-text queries

Free-text queries are issued by applying Lucene’s free-text
search over the field fcontent Which encapsulates all search-
able content of the entities.

4.3.2 Entity and Attribute queries

When searching for entities of a specific type, only en-
tity type is queried. The query is evaluated using the term
query (type, e.type). Thus, all entities of that type will be
retrieved. When both entity type and attribute name and
value are queried, i.e. looking for entities of a certain type
type with a specific attribute a, we issue the term query
(type|a.name, a.value). If there is no constraint on the en-
tity type, then, for each entity type in the system that in-
cludes the attribute a.name, a term query is created with
this type and the given attribute as described above, and
these term queries are combined into a Boolean OR query.

A special treatment is needed for queries which contain
only attribute name. Such queries are evaluated using the
term query (attribute, a.name).

4.3.3 Relationship queries

Recall that a relationship query predicate allows to query
entities based on their relationship participation pattern, in-
cluding the relationship type, entity members whom they
participate with, or relationship attributes that constrain
the relationship context (see Section 3.2.3). This is done by
binding the relationship type r.type with one or more WITH
predicates. For example, looking back at Query 7, the con-
straints are on the relationship type r.type = Bookmark, a
WITH predicate that constrains the relationship to include a
Tag entity labeled with “news”, and a WITH predicate that
further constrains the relationship to include a Document
entity having the “breaking news” expression within its con-
tent.

Note that while a candidate entity may satisfy all the

89

April 16-20, 2012, Lyon, France

relationship predicates independently, this does not imply
that it also satisfies the relationship query. For example, a
person that tagged a document containing “breaking news”
with “report”, and also tagged another document with the
tag “news”, satisfies all predicates of query 7 , however, it
does not satisfy the query. Therefore, we need to examine
each candidate based on additional validation of its corre-
sponding category sets.

We start with evaluating each WITH predicate separately,
and transforming each matching entity or attribute to its
corresponding category. We collect all categories that match
the predicate into a collection termed predicate matching
categories. Next, for each predicate, we collect all cate-
gory sets that contain at least one category from the pred-
icate’s matching categories. We term this collection pred-
icate matching category sets. A category set then satisfies
the relationship query if and only if it contains ¢, ¢ype (i.e.
it represents the desired relationship type), and is included
in all predicate matching category sets (i.e., it satisfies all
WITH predicates).

The final result of the process is a list of category sets
that satisfy the relationship query. The entities which take
part in each of these category sets are obtained using the
category to entity mapping, and reported as query results.

S. EXAMPLE APPLICATION

We now shortly describe an example application that was
implemented using the solution proposed in this paper named
“Social-Medical Discovery” (SMD); an extension of social
search for the medical domain which is part of the IBM Pa-
tient Empowerment System (IBM PES). IBM PES (whose
social-medical discovery user interface is depicted in Fig-
ure 1) is a novel clinical decision support system. IBM PES
empowers the patients and helps increasing patient safety
by assisting patients and their medical providers with daily
medical decision-making.

Many of IBM PES services require to uniformly search so-
cial and medical data, stored in its heterogeneous data repos-
itories, in order to gain insights and provide value. We term
such services as social-medical discovery services [25]. Ex-
ample services span from simple search services that require
to locate relevant information about some patient or medica-
tion, to more complex data exploration services that require
to query the social-medical “dataspace” to reveal interesting
patterns (e.g., relevant patients for some new clinical trial).
Using our solution, even non-expert users of IBM PES, such
as patients and physicians naturally are, can submit queries
over multitude of social-medical data sources, regardless of
their type, underlining data model, and semantics.

A typical search in IBM PES starts with the initial user
need, usually expressed as a free text query. Then, users
can utilize IBM PES interactive query interface for guid-
ing their search towards achieving their information seeking
goals. Every interactive querying step results in a query re-
formulation that adds structured query predicates that best
capture the user’s information need.

As an example, lets assume a searcher that submits an ini-
tial text query “Warfarin 20mg”’. As a result to her query,
the system returns all social and medical entities that in-
clude these keywords in the “content” given by their at-
tributes. First, the searcher can choose the facet entity-
Type:Medication to refine her query to return only related
medication entities. Next, the searcher may be interested in

WWW 2012 - Industrial Track

exploring patients that consume some specific medication by
clicking on the relType:PatientMed relationship facet. Fi-
nally, the searcher may be interested in limiting her search to
return only patients whose age is between 20 to 30 by defin-
ing an age range using the attributeName:age facet. The
final query that represents the searcher information seeking
goal would result with the following query written in our
query language:

Patient.age:[20 TO 30] AND
(PatientMed WITH Medication.*:"Warfarin 20mg"))

6. EVALUATION

We now present the experimental results of an evalua-
tion study conducted with our system. We first describe the
datasets used in this study based on a benchmark recently
published by Coffman et al. [12] (termed Coffman’s bench-
mark hereinafter). We then present our experimental setup
and the evaluation scheme. We first compare the quality of
our system with that of two other discovery approaches. We
then provide a more fine-granular, query-type level, quality
analysis. We conclude this section with runtime analysis,
demonstrating that our system is both efficient and effec-
tive.

6.1 Datasets

The Coffman’s benchmark was used in [12] for evaluat-
ing the quality of several state-of-the-art database keyword
search systems. The benchmark includes three different
datasets, namely Mondial, IMDB, and Wikipedia. Each
dataset is given in the form of database tables accompanied
with a database schema that describes its structure. We
converted each dataset into rich entity-relationship data by
utilizing the primary-key and foreign-key constraints given
in each dataset schema for “reverse-engineering” of the un-
derlying conceptual ER model. Table 1 provides the details
of each dataset, including size, number of tuples, and the
number of entities and relationships after the conversion to
ER model.

The Mondial dataset [24] includes geographical and de-
mographic information from the CTIA World Factbook, the
International Atlas, the TERRA database, and other web
sources. The Mondial dataset is fully structured and does
not include rich text values.

The IMDB dataset is based on the Internet Movie Database
website (http://www.imdb.com/) and includes information
about movies, actor, directors, etc. While the underlying
data model of the IMDB dataset is structured, this dataset
further includes for each movie a special rich text attribute
(Title.info) that provides some related content, e.g., parts
from the movie’s screenplay. Therefore, IMDB serves as an
“hybrid” dataset having a structured data model accompa-
nied with additional rich content.

The Wikipedia dataset includes data extracted from about
5500 articles chosen for the 2008-2009 Wikipedia Schools
DVD, associated with revising users and other linked arti-
cles. In comparison with the two other datasets, this dataset
is mostly textual and has a relatively simple data model.

6.2 Experimental setup and evaluation

For evaluation, we utilized the set of topics that are pro-
vided in Coffman’s benchmark. For each dataset, there are
50 topics, each is expressed by free-text and is associated

90

April 16-20, 2012, Lyon, France

[Dataset [Size (MB) [Tuples [Entities | Relationships |
Mondial 9 17115 5,004 15,198
VDB 516 1,673,074 | 454,740 812,695

Wikipedia 550 206,318 7,781 193,491

Table 1: Datasets details

with a grels (query relevance set) that includes a list of cor-
rect tuple answers, from which we obtained the list of rele-
vant entities. The complexity of the given topics ranges from
the demand to query specific entity attributes, to more “so-
phisticated” topics that require the combination of several
relationship queries to obtain the correct answers [12].

Using our search system’s query language, we managed to
generate queries for the full set of 150 topics. It is important
to note that each such query corresponds to the final query
in a faceted search navigation session that “best” covers the
information need as given in Coffman’s benchmark.

We compared our system with two other approaches that
were presented in Section 1, namely (one-shot) free-text
search and faceted-search. Search quality of the various so-
lutions was measured using mean-average-precision (MAP)
computed at cutoff 1000.

For free-text search, we took the original text-queries,
from each dataset, and submitted them as is to the Lucene
index. For that, each entity was represented in the index by
a single document with its content obtained by “scraping”
all the textual values and metadata associated with it.

As for faceted-search, we used a state-of-the-art faceted-
search system [7]. In such a system we can only index doc-
uments and their associated categories [7]. Therefore, while
we could easily index entities as documents and use their
categories to capture entity types and attributes, there is no
straight-forward way to fully capture their relationships with
other entities. Similarly to the query generation for our ap-
proach, we generated the facet queries such that each query
corresponds to the final query in a faceted search navigation
session that “best” covers the information need.

6.3 Results

We now report the results of the quality analysis of our
search system (denoted ER-FS) and its comparison with the
two other approaches using Coffman’s benchmark, namely,
one-shot free-text search (denoted free-text) and faceted-
search (denoted FS). We further report on the query runtime
analysis for each dataset.

6.3.1 Quality comparison

Figure 4 depicts the result of our comparison between the
various approaches per queried dataset. First, we clearly ob-
serve that for all datasets our system obtains higher MAP
than that of other approaches. The relative quality improve-
ment of our system over the next best performing approach
was about 66%, 53.94%, and 5.78%, for the Mondial, IMDB,
and Wikipedia datasets respectively, with a significant im-
provement for the first two datasets: p < 1077 for Mondial
dataset and p < 107° for IMDB dataset (sign test). For
the Wikipedia dataset the improvement was not significant,
probably because only five topics in this dataset require the
advanced capabilities of relationship querying which are not
supported by the second performing FS approach.

A closer look at the performance trends of our ER-FS ap-
proach compared to those of the simple free-text approach

WWW 2012 - Industrial Track

Mondial IMDb

Dataset

M Free-text OFS HER-FS

Wikipedia

Figure 4: MAP values obtained by our system (ER-
FS) for each dataset compared to the MAP values
obtained by the free-text and faceted search (FS).

in Figure 4 reveals an interesting observation. Moving from
the fully structured Mondial dataset to the semi-structured
Wikipedia dataset, we observe that using the same query-
ing mechanism ER-FS can answer structured queries over
fully structured data with high quality guarantees compared
to the other approaches, as well as answer a wide range of
free-text queries over semi-structured data. This serves as
a strong testament for the capability of our search system
to provide both flexible and intuitive querying over a broad
range of entity-relationship data.

6.3.2 Quality analysis

We now report on a more fine-granular quality analysis of
our search system, further breaking the analysis according to
the type of queries in each dataset in Coffman’s benchmark.
We identify five different types of queries that were gener-
ated over all datasets, namely, free-text queries that query
entities based on their searchable attributes ignoring the
entity’s metadata or data structure, single entity attribute
predicates that query entities directly based on their prop-
erties, single relationship predicates that query entities based
on their participation in some given relationship, multiple re-
lationship predicates that combine several relationship query
predicates, and hybrid queries that combine both entity at-
tribute query predicates and relationship query predicates.

Mondial

?c.,/a
(7'0/ 50%
(1.0)
S
o

. Free-text query
. Single relationship predicate

Wikipedia

|:| Single entity-attribute predicate

D Hybrid query

|:| Multiple relationship predicates

Figure 5: Query type distribution for each queried
dataset using our query language. For each dataset
and query type, MAP values obtained by our system
are further reported in brackets.

Figure 5 depicts for each dataset a pie-chart that describes

91

April 16-20, 2012, Lyon, France

its query type distribution. For each query type and dataset,
we further report on the relative quality obtained by the set
of queries that belong to that type (marked in brackets).
First, as expected, we can observe that as we move from
Wikipedia’s semi-structured dataset to the Mondial’s fully
structured dataset, our system uses more structured query
predicates and less text-based queries. We can also observe
that the relative complexity of the queries increases as we
move to a more structured queried dataset.

The fine-granular quality analysis per query type shades
some light on the reasons for the better performance of our
system compared to the other approaches. For the Mondial
dataset we observe that our search system completely man-
ages to correctly answer all types of queries (hence achieving
MAP=1.0). This is not surprising given that the Mondial
dataset is fully structured and our query language can fully
express the information needs given in this dataset.

For the IMDB dataset we observe that as the query com-
plexity increases the performance decreases, ranging from
0.89 MAP value for single entity attribute predicate queries,
to 0.53 MAP value for multiple relationship predicate queries.
Although such decrease in quality for complex queries is ex-
pected, our system manages to provide almost 54% improve-
ment in performance over the second best approach.

Finally, and most interesting, 60% of the queries in the
Wikipedia dataset can be answered using simple free-text
queries. Therefore, improved quality for the other 40% (20
queries) is directly attributed to the ability to refine the
original free-text queries according to the data structure of
Wikipedia’s ER model. As shown in Figure 4, both FS and
ER-FS provide an improvement on top of the quality ob-
tained by the free-text approache. Furthermore, ER-FS
provides better quality for five queries in the benchmark
compared to the FS approach, due to its unique ability to
serve relationship queries, a capability that FS does not have.

6.3.3 Runtime Analysis

We further analyzed the efficiency of our search system in
terms of query runtime by repeated execution of Coffman’s
benchmark queries several times while recording the average
query runtime and standard deviation for each dataset.

Additionally, we further used the Yago ontology [29] in
order to evaluate the query runtime of our system over a
dataset of a relatively large scale. Yago is a large collection
(6GB) of facts extracted from both Wikipedia and Word-
Net containing millions of facts about people, places, etc.
We translated the Yago ontology from Notation3 format
(http://www.w.org/Designlssues/Notation3) into our ER
data model, resulting in about 1M entities and 500K rela-
tionships. The Yago dataset includes facts that correspond
to the queries in Coffman’s benchmark. Therefore, we ex-
pressed the queries in Coffman’s benchmark using our Yago
data model and submitted the complete set of 150 queries
against our Yago generated search system, measuring re-
peated query runtime.

We have run the experiments on a Windows server ma-
chine with 4GB memory. The results of the runtime anal-
ysis are depicted in Table 2. As one can observe, query
time increases with dataset size and complexity. However,
the query runtime remains sub-second independently of the
dataset size, its type (i.e., fully structured or semi-structured),
or the query type. This demonstrates the efficiency of our
system, in addition to its effectiveness.

WWW 2012 - Industrial Track

[Dataset [Size (MB) | Query runtime (msec) |
Mondial 9 22.99(£4.00)
IMDB 516 182.19(£14.31)
Wikipedia 550 110.99(£4.29)
Yago 5908 334.94(£89.62)

Table 2: Query runtime analysis

7. SUMMARY

In this paper we described a novel discovery approach
over rich entity-relationship data. We presented its funda-
mentals, based on a unique combination of expressive, yet
intuitive, query language, faceted search, and graph navi-
gation. We provided a detailed description of our solution
which extends an existing facet search library for indexing
and searching generalized entity-relationship data models,
allowing new exploration capabilities. We then evaluated
our system by comparing its performance to two other ex-
isting approaches and demonstrated its effectiveness and ef-
ficiency.

Our work can be extended in several ways. First, we wish
to extend our interactive query language to support more
query types, e.g., SPARQL-like multi-chain-queries [33]. Sec-
ond, though the experimental results demonstrate that our
ER discovery approach performs relatively well, there is still
a lot of room for improvement, especially for semi-structured
data. Our search system still depends on Lucene’s own rank-
ing mechanism for ranking entities. For future work we
intend to explore novel entity ranking methods, including
proximity and context-aware ranking models. Finally, we
wish to study the usability of the suggested exploration ap-
proach using user studies to better understand the ability of
users with different levels of expertise to interact with our
ER search system. We believe that the new discovery ap-
proach described in this work opens many new challenges in
terms of human computer interaction.

8. REFERENCES

[1] B. Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind
Hulgeri, Charuta Nakhe, Parag Parag, and S. Sudarshan.
Banks: browsing and keyword searching in relational databases.
In Proceedings of VLDB, pages 1083-1086. VLDB Endowment,
2002.
Einat Amitay, David Carmel, Nadav Har’El, Shila
Ofek-Koifman, Aya Soffer, Sivan Yogev, and Nadav Golbandi.
Social search and discovery using a unified approach. In
Proceedings of Hypertext and Hypermedia, pages 199—208.
ACM, 2009.
Krisztian Balog, Edgar Meij, and Maarten de Rijke. Entity
search: building bridges between two worlds. In Proceedings of
SEMSEARCH, pages 9:1-9:5. ACM, 2010.
Krisztian Balog, Pavel Serdyukov, Arjen P. De Vries, Paul
Thomas, and Thijs Westerveld. Overview of the TREC 2009
entity track. In Proceedings of TREC, 2009.
Holger Bast and Ingmar Weber. Type less, find more: fast
autocompletion search with a succinct index. In Proceedings of
SIGIR, pages 364-371. ACM, 2006.
Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar,
and Mukesh Mohania. Minimum-effort driven dynamic faceted
search in structured databases. In Proceeding of CIKM, pages
13-22. ACM, 2008.
Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny
Lempel, Andreas Neumann, Shila Ofek-Koifman, Dafna
Sheinwald, Eugene Shekita, Benjamin Sznajder, and Sivan
Yogev. Beyond basic faceted search. In Proceedings of WSDM,
pages 33-44. ACM, 2008.
Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao,
Enhong Chen, and Hang Li. Context-aware query suggestion by
mining click-through and session data. In Proceeding of
SIGKDD, pages 875-883. ACM, 2008.

92

19l

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]
(27]
28]

[29]

(30]

(31]

(32]

(33]

April 16-20, 2012, Lyon, France

Kaushik Chakrabarti, Venkatesh Ganti, Jiawei Han, and Dong
Xin. Ranking objects based on relationships. In Proceedings of
SIGMOD, pages 371-382. ACM, 2006.

Peter Pin-Shan Chen. The entity-relationship model-toward a
unified view of data. ACM Trans. Database Syst., 1:9-36,
March 1976.

Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang.
Entityrank: searching entities directly and holistically. In
Proceedings of VLDB, pages 387-398. VLDB Endowment,
2007.

Joel Coffman and Alfred C. Weaver. A framework for
evaluating database keyword search strategies. In Proceedings
of CIKM, pages 729-738. ACM, 2010.

Joel Coffman and Alfred C. Weaver. Structured data retrieval
using cover density ranking. In Proceedings of the Workshop
on Keyword Search on Structured Data, pages 1:1-1:6. ACM,
2010.

Gianluca Demartini, Tereza Iofciu, and Arjen P. De Vries.
Overview of the INEX 2009 entity ranking track. In Proceedings
of the INEX’09, pages 254-264. Springer-Verlag, 2010.

Carlos Garcia-Alvarado, Zhibo Chen, and Carlos Ordonez.
Olap-based query recommendation. In Proceedings of CIKM,
pages 1353-1356. ACM, 2010.

Lin Guo, Feng Shao, Chavdar Botev, and Jayavel
Shanmugasundaram. Xrank: ranked keyword search over xml
documents. In Proceedings of SIGMOD, pages 16-27. ACM,
2003.

Alon Y. Halevy, Alberto O. Mendelzon, Yehoshua Sagiv, and
Divesh Srivastava. Answering queries using views. In
Proceedings of PODS, pages 95-104, 1995.

Andreas Hotho, Robert Jidschke, Christoph Schmitz, and Gerd
Stumme. Information retrieval in folksonomies: Search and
ranking. In Proceedings of ESWC ’06, pages 411-426, 2006.
Vagelis Hristidis and Yannis Papakonstantinou. Discover:
keyword search in relational databases. In Proceedings of
VLDB, pages 670-681. VLDB Endowment, 2002.

Glen Jeh and Jennifer Widom. SimRank: a measure of
structural-context similarity. In Proceedings of SIGKDD, pages
538-543. ACM Press, 2002.

Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya
Ramanath, and Gerhard Weikum. Naga: Searching and ranking
knowledge. In Proceedings of ICDE, pages 953-962. IEEE
Computer Society, 2008.

Yehuda Koren, Stephen C. North, and Chris Volinsky.
Measuring and extracting proximity in networks. In Proceedings
of SIGKDD, pages 245-255, New York, NY, USA, 2006. ACM.
Yuangui Lei, Victoria Uren, and Enrico Motta. SemSearch - a
search engine for the semantic web. 2006.

W. May. Information extraction and integration with florid:
The mondial case study. Technical Report 131, Universitat
Freiburg, Institut fiir Informatik.

Haggai Roitman, Yossi Messika, Yevgenia Tsimerman, and
Sivan Yogev. A unified approach for social-medical discovery. In
Proceedings of the 23rd International Conference of the
European Federation for Medical Informatics (MIE), Oslo,
Norway, 2011.

Haggai Roitman, Sivan Yogev, Yevgenia Tsimerman, Dae Won
Kim, and Yossi Messika. Exploratory search over social-medical
data. In Proceedings of CIKM, 2011.

Tan Ruthven. Interactive information retrieval. Annual Rev.
Info. Sct & Technol., 42:43-91, January 2008.

SPARQL. http://www.w3.org/tr/rdf-sparql-query/.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum.
Yago: a core of semantic knowledge. In Proceedings of WWW,
2007.

Daniel Tunkelang. Faceted Search. Morgan & Claypool
Publishers, 2009.

Gerhard Weikum, Gjergji Kasneci, Maya Ramanath, and
Fabian Suchanek. Database and information-retrieval methods
for knowledge discovery. Commun. ACM, 52:56-64, April 2009.
Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, and
Wolfgang Nejdl. From keywords to semantic
queries-incremental query construction on the semantic web.
Web Semant., 7:166—-176, September 2009.

Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong
Yu. Spark: adapting keyword query to semantic search. In
Proceedings of ISWC/ASWC, pages 694-707. Springer-Verlag,
2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

