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ABSTRACT 
In this paper, we describe a model that can be used to evaluate the 
impact of using imperfect information when routing supplies for 
disaster relief. Using two objectives, maximizing the population 
supported, and minimizing response time, we explore the potential 
tradeoffs (e.g. more information, but possibly less accurate) of 
using information from social media streams to inform routing 
and resource allocation decisions immediately after a disaster.  

Categories and Subject Descriptors 
A.0 [General]: conference proceedings; G.1.6 [Numerical 
Analysis]: Optimization – stochastic programming; H.1.1 
[Models and Principles]: Systems and Information Theory – 
value of information; H.4.2 [Information Systems 
Applications]: Types of Systems – decision support, logistics; 
I.6.5 [Simulation and Modeling]: Model Development. 

General Terms 
Algorithms, Performance, Experimentation, Theory, Verification. 

Keywords 
Vehicle routing problem, heuristic, imperfect information, social 
media, humanitarian logistics, disasters, emergency management. 

1. INTRODUCTION 
Information regarding the location and need of the population 
affected by a disaster is required in order to plan how to deliver 
support to that population.  Traditionally, this information 
becomes available as flyovers and other forms of assessment are 
completed.   However, critical hours pass while this information is 
collected, and certain critical needs may not be identified in this 
manner.   A larger number of needs can possibly be identified in a 
shorter amount of time if data taken from social media is also used 
for disaster planning. Posts by affected populations to platforms 
such as Twitter, Facebook, and Ushahidi regarding where they are 
located and how much help they need could be useful in the 
response planning process, augmenting the data available through 
more traditional means [1].  As an example, following the 
Japanese earthquake and tsunami in March 2011, Twitter reported 
an event spike of up to 5,530 postings per second on their 
platform [2].  Because a large portion of this information is 
initially not verified, some of it may be inaccurate.  Emergency 
managers in the United States have cited this concern as a major 
barrier to incorporating social media information in their decision-
making [3].  If responders spend time traveling to locations where 

they think there is demand, only to see that no help is needed 
there, then the remaining population needing support could be 
adversely affected.  Inaccurate information about needs has been 
identified as one of the primary impediments to the rapid delivery 
of goods immediately following a disaster [4].  

In this paper, we examine the tradeoff between having more, but 
possibly inaccurate, data when routing vehicles for the delivery of 
relief supplies. We evaluate the tradeoff considering two separate 
objectives: maximizing the population supported, and minimizing 
response time. This work extends models in the disaster relief 
routing literature that address uncertainty in demand by 
considering the effects on decision-making when two distinct 
classes of information are taken into account [4].  More broadly, 
this work also contributes to the body of literature that addresses 
questions around the usefulness of information provided through 
citizen event reporting [5]. In Section 2, we formalize the problem 
statement.  In Section 3, we discuss methodologies planned for the 
analysis of the impact of unverified data on disaster relief 
decision-making.  Research questions to be addressed in future 
work are discussed in Section 4. 

2. PROBLEM STATEMENT 
A fleet of m homogenous vehicles, each having capacity u 
specifying the weight or volume that can be carried, are stationed 
at a depot and are available to serve customer requests. A set N of 
customer requests is known, where each request is a vector that 
represents a subgroup of the impacted population with a specific 
need at a known location xi.  The need may be for search and 
rescue, medical support, or relief supplies such as food, water, and 
shelter.  In the remainder of this paper, we assume all requests 
specify a need for relief supplies but the ideas and methods 
described can be extended to accommodate other classes of needs 
in the future.  The magnitude of need, denoted li, specifies the 
amount of relief supplies required by the subgroup, and generally 
is assumed to be proportional to the number of persons in the 
subgroup.  The service time of the need, si, accounts for the time 
the vehicle must spend at the location delivering required goods 
before departing to serve the next request. Note the total time 
required for a vehicle to serve a request includes service time and 
additional travel time required to visit the customer. 

We assume that a subset of requests have been previously 
verified, NV, representing, for example, those demand points 
revealed by damage assessment teams.  The remaining demand 
points, denoted NS, represent those requests from a source such as 
social media.  Requests in NS have not been verified, and thus may 
be inaccurate according to some probability distribution. We 
define an inaccurate request as one where the magnitude li and 
service time si are other than indicated.  The accuracy of a request 
is not known until the vehicle serving the request arrives at the 
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associated location.  Examples of inaccurate requests include 
needs that never actually existed (no subgroup is at the location), 
needs that exist at another location instead of the one indicated, 
needs that exist at the location but in a different quantity (more or 
less people in the subgroup), and needs that are served by another 
party between the time they are reported and the vehicle arrives.  
Denoting the time the vehicle arrives at location xi as ai, the 
accuracy of request i∈NS becomes known at time ai.  Then, 
magnitude of need li and service time si are updated according to 
the newly revealed (and newly verified) information. 

In this setting, two separate problems are considered.  In the first, 
which we refer to as Minimize Arrival Time (MAT), the problem 
is to assign each customer request in N=Nv∪NS to exactly one 
vehicle while obeying vehicle capacity constraints, and create 
routes for each vehicle that begin and end at the depot and serve 
assigned requests.  The objective is to minimize average vehicle 
arrival time for all requests.  In the second, referred to as 
Maximize Requests Served (MRS), the problem is to assign each 
customer request in N=Nv∪NS to at most one vehicle while 
obeying vehicle capacity constraints and create routes for each 
vehicle that begin at the depot, serve all assigned requests, and 
return to the depot by a fixed time limit T.  Note that not all 
customer requests will be served in MRS. The objective is to 
maximize the number of requests that are served. 

To evaluate the impact of incorporating the new class of 
unverified requests from social media in disaster relief planning, 
we compare solutions to MAT and MRS to the case where only 
requests in NV are considered when planning vehicle routes. We 
denote the modified problems at MAT-V and MRS-V, 
respectively.  In the next section, we present models and insights 
for the described problems. 

3. MODELS AND INSIGHTS 
All above problems (MAT, MRS, MAT-V, MRS-V) can be 
modeled as variants of the classical vehicle routing problem 
(VRP) defined on graph G=(N’,A) where node set N’ is comprised 
of the depot location plus the locations xi for all i in the 
appropriate request set (either NV∪NS or only NV), and A is 
comprised of arcs linking depot and request locations.  In our 
study, arcs are assumed to be reliable with deterministic travel 
times tjk on each arc (j,k).  MAT-V and MRS-V are modeled as  
deterministic VRP variants, while MAT and MRS are modeled as 
VRP variants where one class of requests is deterministic (NV) and 
one is stochastic (NS).  Rather than provide these well known 
formulations here, we refer the reader to [6] and [7] for 
comprehensive reviews of deterministic and stochastic VRP 
variants, respectively.  In what follows, we present basic insights 
from two extreme cases for the problems being studied: (i) every 
unverified request in NS is inaccurate, and (ii) every unverified 
request in NS is accurate. Furthermore, we restrict the types of 
inaccurate requests considered to those representing needs that 
never actually existed.  

3.1 Minimize arrival time (MAT/MAT-V) 
In MAT and MAT-V, all requests are served, and the objective is 
to minimize the average arrival time at request locations.  Suppose 
all requests in NS are inaccurate, so that all true need requests are 
expressed in NV.  Clearly, solving MAT-V will yield the optimal 
solution, while solving MAT will result in average arrival times 

that are at least as great as the solution provided to MAT-V. If 
instead all requests in NS are accurate, the opposite is true.  
Solving MAT yields the true optimal solution.  Solving MAT-V 
would leave all requests in NS unserved for the time being.  While 
these needs may eventually be discovered by more traditional 
means and serviced at some point, the arrival time of the relief 
support will be much later. 

3.2 Maximize requests served (MRS/MRS-V) 
In these problems, the objective is to serve as many requests as 
possible by a fixed time limit T.  If all requests in NS are 
inaccurate, then an upper bound on the number of requests that 
can be served when solving both MRS and MRS-V is |NV|.  If an 
instance is tightly constrained with respect to T, fewer requests 
will be served.  Denoting optimal solutions to these problems as 
MRS* and MRS-V*, it is clear that MRS* <= MRS-V*, because 
time spent driving to and evaluating inaccurate requests in NS will 
consume valuable time that could be spent serving those in NV.  If 
instead all requests in NS are accurate, then an upper bound on the 
number of requests that can be served in both problems is |NV+NS|.  
This bound can only possibly achieved when solving MRS, and in 
this case, we find that MRS* >= MRS-V*.  

4. RESEARCH QUESTIONS 
Our future work will expand on the presented models and attempt 
to answer several of the many questions that remain around the 
usefulness of data obtained from social media platforms.  These 
include evaluation of 1) the impact on the planning process of 
varying the spatial distributions of NS and NV requests, and 2) the 
impact on solution quality when varying the proportion (or 
distribution) of inaccurate requests in NS from the extreme cases 
already presented. Additional extensions will include evaluation 
when arc quality is stochastic and analysis of policy implications 
when social media usage demographics are incorporated. 
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